scholarly journals Patterns and Predictors of Small Mammal Phylogenetic and Functional Diversity in Contrasting Elevational Gradients in Kenya

2022 ◽  
Vol 9 ◽  
Author(s):  
Kenneth Otieno Onditi ◽  
Wen-Yu Song ◽  
Xue-You Li ◽  
Zhong-Zheng Chen ◽  
Quan Li ◽  
...  

Mountains of the Afrotropics are global biodiversity hotspots and centers of speciation and endemism; however, very few studies have focused on the phylogenetic and functional dimensions of Afromontane small mammals. We investigated the patterns and mechanisms of small mammal phylogenetic and functional diversity and assembly along elevational gradients in Mount Kenya, the second highest mountain in Africa, and a contrasting low mountain range, Chyulu Hills. We sampled 24 200-m interval transects in both sites; 18 in Mt. Kenya (9 each in the windward side, Chogoria, and the leeward side, Sirimon) and 6 in Chyulu. We extracted the mitochondrial Cytochrome b gene to reconstruct a time-calibrated species tree for estimating phylogenetic diversity indices [phylogenetic richness (PD), mean nearest taxon distance (PDMNTD), and nearest taxon index (PDNTI)]. A functional trait data set was compiled from the field-recorded measurements and published data sets for estimating functional diversity indices [functional richness (FD), mean nearest taxon distance (FDMNTD), and nearest taxon index (FDNTI)]. Several environmental variables representing water-energy availability, primary habitat productivity, and topographic heterogeneity were used to estimate the predictive power of abiotic conditions on diversity variances using generalized linear and generalized additive regression models. The PD and FD peaked around mid-elevations in Mt. Kenya, unimodally increased or decreased in Chogoria and Sirimon, and monotonically increased in Chyulu. The divergence and community structure indices—PDMNTD, FDMNTD, and PDNTI and FDNTI—were relatively weakly associated with elevation. Overall, the tendency of assemblages to be phylogenetically and functionally closely related than expected by chance decreased with elevation in Mt. Kenya but increased in Chyulu. Across the indices, the annual precipitation and topographic ruggedness were the strongest predictors in Mt. Kenya, evapotranspiration and temperature seasonality were the strongest predictors in Chyulu, while temperature seasonality and terrain ruggedness overlapped as the strongest predictors in Chogoria and Sirimon in addition to annual precipitation in the latter and normalized difference vegetation index in the former. The observed contrasting trends in diversity distribution and the strongest predictors between elevational gradients are integral to the sustainable management of the high faunal biodiversity in tropical Afromontane ecosystems.

Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 546
Author(s):  
Alexis Joseph Rodríguez-Romero ◽  
Axel Eduardo Rico-Sánchez ◽  
Jacinto Elías Sedeño-Díaz ◽  
Eugenia López-López

The analysis of functional diversity has shown to be more sensitive to the effects of natural and anthropogenic disturbances on the assemblages of aquatic macroinvertebrates than the classical analyses of structural ecology. However, this ecological analysis perspective has not been fully explored in tropical environments of America. Protected Natural Areas (PNAs) such as biosphere reserves can be a benchmark regarding structural and functional distribution patterns worldwide, so the characterization of the functional space of biological assemblages in these sites is necessary to promote biodiversity conservation efforts. Our work characterized the multidimensional functional space of the macroinvertebrate assemblages from an ecosystemic approach by main currents, involving a total of 15 study sites encompassing different impact and human influence scenarios, which were monitored in two contrasting seasons. We calculated functional diversity indices (dispersion, richness, divergence, evenness, specialization, and originality) from biological and ecological traits of the macroinvertebrate assemblages and related these indices to the physicochemical characteristics of water and four environmental indices (Water Quality Index, habitat quality, Normalized Difference Vegetation Index, and vegetation cover and land use). Our results show that the indices of functional richness, evenness, and functional specialization were sensitive to disturbance caused by salinization, concentration of nutrients and organic matter, and even to the occurrence of a forest fire in the reserve during one of the sampling seasons. These findings support the conclusion that the changes and relationships between the functional diversity indices and the physicochemical parameters and environmental indices considered were suitable for evaluating the ecological conditions within the reserve.


Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 493
Author(s):  
Vanessa Velásquez-Trujillo ◽  
Juan F. Betancurt-Grisales ◽  
Angela M. Vargas-Daza ◽  
Carlos E. Lara ◽  
Fredy A. Rivera-Páez ◽  
...  

Agricultural systems have increased in extension and intensity worldwide, altering vertebrate functional diversity, ecosystem functioning, and ecosystemic services. However, the effects of open monoculture crops on bird functional diversity remain little explored, particularly in highly biodiverse regions such as the tropical Andes. We aim to assess the functional diversity differences of bird guilds between monoculture crops (coffee, cocoa, and citrus) and secondary forests. We use four functional diversity indices (Rao Q, Functional Richness, Functional Evenness, and Functional Divergence) related to relevant morphological, life history, and behavioral traits. We find significant differences in functional diversity between agroecosystem and forest habitats. Particularly, bird functional diversity is quite homogeneous among crop types. Functional traits related to locomotion (body weight, wing-chord length, and tail length), nest type (closed), and foraging strata (canopy and understory) are dominant at the agroecosystems. The bird assemblages found at the agroecosystems are more homogeneous in terms of functional diversity than those found at the secondary forests, as a result of crop structure and management. We recommend promoting more diverse agroecosystems to enhance bird functional diversity and reduce their effects on biodiversity.


Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Ana Paula Lima do Couto-Santos ◽  
Lia D’Afonsêca Pedreira de Miranda ◽  
Davi Rodrigo Rossatto ◽  
Ligia Silveira Funch

Abstract We compared the functional diversity of community at edge and interior areas of an Atlantic forest fragment to test the hypothesis that higher functional diversity exists along edges - in consonance with their higher abundance and floristic diversity as compared to the interior of the forest. By considering a set of vegetative, reproductive and phenological traits and ecosystem service aspects of edge and interior environments, we defined plant functional groups using Cluster Analysis, followed by a silhouette width analysis, together with functional diversity indices of richness, divergence, evenness and dispersion. The main functional groups formed were similar between the edges and interior. Functional richness was the only index that demonstrated differences between edge and the interior. Alterations were perceived in relation to species richness and the Shannon index. Edge effects were not significant in the formation of functional groups. In contrast to our original hypothesis, similar groups were formed both along the edge in the interior - indicating that species played similar ecological roles in both environments, with similar responses to different environmental factors - so that forest edges were colonized by a series of different species that maintained diversity patterns similar to those found in the forest interior.


2020 ◽  
Vol 28 (3) ◽  
pp. 257-264
Author(s):  
M. Teshome ◽  
Z. Asfaw ◽  
M. Mohammed

Understanding plant species distribution patterns along environmental gradients is fundamental to managing ecosystems, particularly when habitats are fragmented due to intensive human land use pressure. The variation pattern of functional diversity of plant communities along the elevation gradient in the Dindin dry evergreen Afromontane forest was tested. Fifty four plots of 20 x 20 m (400 m2) were established at 200 m intervals starting 2,300–2,900 m a. s. l. and woody species composition, and environmental variables were recorded. Nine functional diversity indices based on functional distances were employed to esimate functional diversity. The mixed effect model was used to determine the effect of elevation, aspect and slope on functional diversity indices. The results showed that functional diversity in communities varied greatly; functional diversity revealed a decrease with increasing elevation and a‘‘humped’’ pattern, with peak diversity appearing at middle elevation. Functional diversity was significantly correlated with elevation, slope, and aspect. Functional diversity was significantly correlated with species richness and evenness. Environmental filtering was important to the functional diversity pattern; the nine indices were all successful in the analysis of functional diversity in the plant community with different effectiveness, and modified functional attribute diversity, plot-based functional diversity, community based functional diversity, functional richness, and community weight mean of woody density performed better than the other four indices in this study.


2020 ◽  
Vol 287 (1940) ◽  
pp. 20201713
Author(s):  
Alessio Mortelliti ◽  
Allison M. Brehm

Understanding factors affecting the functional diversity of ecological communities is an important goal for ecologists and conservationists. Previous work has largely been conducted at the community level; however, recent studies have highlighted the critical importance of considering intraspecific functional diversity (i.e. the functional diversity of phenotypic traits among conspecifics). Further, a major limitation of existing literature on this topic is the lack of empirical studies examining functional diversity of behavioural phenotypes —including animal personalities. This is a major shortcoming because personality traits can affect the fitness of individuals, and the composition of personalities in a population can have important ecological consequences. Our study aims to contribute to filling this knowledge gap by investigating factors affecting the functional diversity of personality traits in wild animal populations. Specifically, we predicted that the richness, divergence and evenness associated with personality traits would be impacted by key components of forest structure and would vary between contrasting forest types. To achieve our objective we conducted a fully replicated large-scale field experiment over a 4 year period using small mammal populations as a model system. We found that greater heterogeneity in the cover of shrubs, coarse woody debris and canopy cover was associated with a greater richness, lower divergence and lower evenness in personality traits. Greater population density was associated with greater functional richness and lower functional divergence and evenness of personality traits. To maintain a behaviourally diverse population and its associated functions, managers may promote heterogeneity in vegetation and increased population density, which we found to be the most important determinants driving functional diversity of personality traits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rohit Chakravarty ◽  
Ram Mohan ◽  
Christian C. Voigt ◽  
Anand Krishnan ◽  
Viktoriia Radchuk

AbstractSpecies richness exhibits well-known patterns across elevational gradients in various taxa, but represents only one aspect of quantifying biodiversity patterns. Functional and phylogenetic diversity have received much less attention, particularly for vertebrate taxa. There is still a limited understanding of how functional, phylogenetic and taxonomic diversity change in concert across large gradients of elevation. Here, we focused on the Himalaya—representing the largest elevational gradients in the world—to investigate the patterns of taxonomic, functional and phylogenetic diversity in a bat assemblage. Combining field data on species occurrence, relative abundance, and functional traits with measures of phylogenetic diversity, we found that bat species richness and functional diversity declined at high elevation but phylogenetic diversity remained unchanged. At the lowest elevation, we observed low functional dispersion despite high species and functional richness, suggesting a niche packing mechanism. The decline in functional richness, dispersion, and divergence at the highest elevation is consistent with patterns observed due to environmental filtering. These patterns are driven by the absence of rhinolophid bats, four congeners with extreme trait values. Our data, some of the first on mammals from the Himalayan region, suggest that in bat assemblages with relatively high species diversity, phylogenetic diversity may not be a substitute to measure functional diversity.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 275
Author(s):  
Mariana A. Tsianou ◽  
Maria Lazarina ◽  
Danai-Eleni Michailidou ◽  
Aristi Andrikou-Charitidou ◽  
Stefanos P. Sgardelis ◽  
...  

The ongoing biodiversity crisis reinforces the urgent need to unravel diversity patterns and the underlying processes shaping them. Although taxonomic diversity has been extensively studied and is considered the common currency, simultaneously conserving other facets of diversity (e.g., functional diversity) is critical to ensure ecosystem functioning and the provision of ecosystem services. Here, we explored the effect of key climatic factors (temperature, precipitation, temperature seasonality, and precipitation seasonality) and factors reflecting human pressures (agricultural land, urban land, land-cover diversity, and human population density) on the functional diversity (functional richness and Rao’s quadratic entropy) and species richness of amphibians (68 species), reptiles (107 species), and mammals (176 species) in Europe. We explored the relationship between different predictors and diversity metrics using generalized additive mixed model analysis, to capture non-linear relationships and to account for spatial autocorrelation. We found that at this broad continental spatial scale, climatic variables exerted a significant effect on the functional diversity and species richness of all taxa. On the other hand, variables reflecting human pressures contributed significantly in the models even though their explanatory power was lower compared to climatic variables. In most cases, functional richness and Rao’s quadratic entropy responded similarly to climate and human pressures. In conclusion, climate is the most influential factor in shaping both the functional diversity and species richness patterns of amphibians, reptiles, and mammals in Europe. However, incorporating factors reflecting human pressures complementary to climate could be conducive to us understanding the drivers of functional diversity and richness patterns.


Author(s):  
Wenjun Gao ◽  
Shuo Zhang ◽  
Xiaohang Li ◽  
Zhenxia Liu

In cylindrical roller bearings, the drag effect may be induced by the rolling element translating in a fluid environment of the bearing cavity. In this article, the computational fluid dynamics method and experimental tests are employed to analyse its flow characteristics and pressure distribution. The results indicate that the pressure difference between the windward side and the leeward side of the cylinder is raised in view of it blocking the flow field. Four whirl vortexes are formed in four outlets of two wedge-shaped areas between the front part of the cylindrical surface and adjacent walls for the cylinder of L/ D = 1.5 at Re = 4.5 × 103. Vortex shedding is found in the direction of cylinder axis at Re = 4.5 × 104. The relationship between drag coefficient and Reynolds number is illustrated, obviously higher than that of the two-dimensional cylinder in open space.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3101
Author(s):  
Yu Wan ◽  
Zhenxiang Yi

In this paper, a novel 2.5-dimensional (2.5D) flexible wind sensor is proposed based on four differential plate capacitors. This design consists of a windward pillar, two electrode layers, and a support layer, which are all made of polydimethylsiloxane (PDMS) with different Young’s moduli. A 2 mm × 2 mm copper electrode array is located on each electrode layer, forming four parallel plate capacitors as the sensitive elements. The wind in the xy-plane tilts the windward pillar, decreasing two capacitances on the windward side and increasing two capacitances on the leeward side. The wind in the z-axis depresses the windward pillar, resulting in an increase of all four capacitances. Experiments demonstrate that this sensor can measure the wind speed up to 23.9 m/s and the wind direction over the full 360° range of the xy-plane. The sensitivities of wind speed are close to 4 fF·m−1·s and 3 fF·m−1·s in the xy-plane and z-axis, respectively.


1980 ◽  
Vol 209 (1175) ◽  
pp. 209-217 ◽  

Penetration of an animal’s coat by wind reduces its thermal insulation and increases heat loss to the environment. From studies of the sensible heat loss from a life-sized model sheep covered with fleece, the average fleece resistance r¯ f (s cm -1 ) was related to windspeed u (m s -1 ) by 1/ r¯ f ( u ) = l/ r¯ f (0) + cu , where c is a dimensionless constant. As c is expected to be inversely proportional to coat depth Î , the more general relation k¯ ( u ) = k¯ (0) + c'u was evaluated, where k¯ = Î / r¯ f is the thermal diffusivity (cm 2 s -1 ) of the fleece and c' = cÎ is another constant (cm). The orientation of the model to the wind had little effect on the bulk resistance of the fleece, but the resistance on the windward side was substantially lower than on the leeward side.


Sign in / Sign up

Export Citation Format

Share Document