scholarly journals Machine Learning Prediction of Crossbred Pig Feed Efficiency and Growth Rate From Single Nucleotide Polymorphisms

2020 ◽  
Vol 11 ◽  
Author(s):  
Llibertat Tusell ◽  
Rob Bergsma ◽  
Hélène Gilbert ◽  
Daniel Gianola ◽  
Miriam Piles

This research assessed the ability of a Support Vector Machine (SVM) regression model to predict pig crossbred (CB) performance from various sources of phenotypic and genotypic information for improving crossbreeding performance at reduced genotyping cost. Data consisted of average daily gain (ADG) and residual feed intake (RFI) records and genotypes of 5,708 purebred (PB) boars and 5,007 CB pigs. Prediction models were fitted using individual PB genotypes and phenotypes (trn.1); genotypes of PB sires and average of CB records per PB sire (trn.2); and individual CB genotypes and phenotypes (trn.3). The average of CB offspring records was the trait to be predicted from PB sire’s genotype using cross-validation. Single nucleotide polymorphisms (SNPs) were ranked based on the Spearman Rank correlation with the trait. Subsets with an increasing number (from 50 to 2,000) of the most informative SNPs were used as predictor variables in SVM. Prediction performance was the median of the Spearman correlation (SC, interquartile range in brackets) between observed and predicted phenotypes in the testing set. The best predictive performances were obtained when sire phenotypic information was included in trn.1 (0.22 [0.03] for RFI with SVM and 250 SNPs, and 0.12 [0.05] for ADG with SVM and 500–1,000 SNPs) or when trn.3 was used (0.29 [0.16] with Genomic best linear unbiased prediction (GBLUP) for RFI, and 0.15 [0.09] for ADG with just 50 SNPs). Animals from the last two generations were assigned to the testing set and remaining animals to the training set. Individual’s PB own phenotype and genotype improved the prediction ability of CB offspring of young animals for ADG but not for RFI. The highest SC was 0.34 [0.21] and 0.36 [0.22] for RFI and ADG, respectively, with SVM and 50 SNPs. Predictive performance using CB data for training leads to a SC of 0.34 [0.19] with GBLUP and 0.28 [0.18] with SVM and 250 SNPs for RFI and 0.34 [0.15] with SVM and 500 SNPs for ADG. Results suggest that PB candidates could be evaluated for CB performance with SVM and low-density SNP chip panels after collecting their own RFI or ADG performances or even earlier, after being genotyped using a reference population of CB animals.

2021 ◽  
Vol 10 ◽  
Author(s):  
Hang Cao ◽  
E. Zeynep Erson-Omay ◽  
Murat Günel ◽  
Jennifer Moliterno ◽  
Robert K. Fulbright

ObjectivesTo measure the metrics of glioma pre-operative MRI reports and build IDH prediction models.MethodsPre-operative MRI reports of 144 glioma patients in a single institution were collected retrospectively. Words were transformed to lowercase letters. White spaces, punctuations, and stop words were removed. Stemming was performed. A word cloud method applied to processed text matrix visualized language behavior. Spearman’s rank correlation assessed the correlation between the subjective descriptions of the enhancement pattern. The T1-contrast images associated with enhancement descriptions were selected. The keywords associated with IDH status were evaluated by χ2 value ranking. Random forest, k-nearest neighbors and Support Vector Machine algorithms were used to train models based on report features and age. All statistical analysis used two-tailed test with significance at p <.05.ResultsLonger word counts occurred in reports of older patients, higher grade gliomas, and wild type IDH gliomas. We identified 30 glioma enhancement descriptions, eight of which were commonly used: peripheral, heterogeneous, irregular, nodular, thick, rim, large, and ring. Five of eight patterns were correlated. IDH mutant tumors were characterized by words related to normal, symmetric or negative findings. IDH wild type tumors were characterized words by related to pathological MR findings like enhancement, necrosis and FLAIR foci. An integrated KNN model based on report features and age demonstrated high-performance (AUC: 0.89, 95% CI: 0.88–0.90).ConclusionReport length depended on age, glioma grade, and IDH status. Description of glioma enhancement was varied. Report descriptions differed for IDH wild and mutant gliomas. Report features can be used to predict glioma IDH status.


2020 ◽  
Vol 13 (6) ◽  
pp. 1126-1132
Author(s):  
Heba Ibrahim Shafey ◽  
Karima Fathy Mahrous ◽  
Amal Ahmed Mohamed Hassan ◽  
Hossam Eldin Rushdi ◽  
Mohamed Abd El-Aziz Mohamed Ibrahim

Aim: The present study was performed to assess the association of single-nucleotide polymorphisms (SNPs) in the fatty acid-binding protein 4 (FABP4) gene with birth weight (BW), final weight (FW), and average daily gain (ADG) in three Egyptian sheep breeds. Materials and Methods: Genomic DNA was extracted from the blood samples of 50 male and female individuals representing Ossimi, Rahmani, and Barki sheep breeds. A 407 bp nucleotide (nt) segment from the first intron of FABP4 was amplified by polymerase chain reaction, sequenced, and analyzed in the different samples. Results: Sequence analysis of the determined segment (407 bp) revealed four SNPs (all transition types) at nt position 372 (CP011894.1:g.57605471) A>G, nt position 211 (CP011894.1:g.57605632) A>G, nt position 143 (CP011894.1:g.57605700) T>C, and nt position 111 (CP011894.1:g.57605732) T>C. The allelic and genotypic frequencies for the identified SNPs in the sheep breeds were calculated. At nt positions 372 and 211, two alleles were identified (A and G). Only two genotypes were present at nt position 372 (AA and AG), while three genotypes were present at nt position 211 (AA, AG, and GG). Two alleles (T and C) and three identified genotypes (TT, TC, and CC) were detected at nt positions 143 and 111. Analysis of the results revealed that AA genotype at nt position 372 is associated with higher estimates for BW, FW, and ADG when compared to all the other genotypes. Very high correlation coefficients were found between the genotypes 143-TT and 111-TT and also between 143-TC and 111-TC. The genotypes 372-AG, 211-GG, 211-AA, 143-TT, 143-CC, 111-TT, 111-TC, and 111-CC were associated with negative effects on BW, FW, and ADG. Conclusion: The detection of four SNPs in a partial sequence of the Egyptian ovine FABP4 gene intron 1 reflected that this gene harbors substantial diversity. In addition, a novel SNP at nt position 372 (CP011894.1:g.57605471) A>G was associated with higher estimates for BW, FW, and ADG.


Author(s):  
Nguyen Hoang Thinh ◽  
Hoang Anh Tuan ◽  
Nguyen Thi Vinh ◽  
Bui Huu Doan ◽  
Nguyen Thi Phuong Giang ◽  
...  

This study was conducted in Mia chicken breed to evaluate the association between four single nucleotide polymorphisms (SNPs), in insulin (INS) and growth hormone (GH) genes, with growth traits. Three genotypes for the SNP A3971G of INS gene and the SNP G662A and C423T of GH gene were present in the population while only two genotypes were found in the Mia chicken breed for SNP T3737C of INS gene (TT and TC). The SNP T3737C INS gene and G662A GH gene had significant association with growth traits (P less than 0.05). A significant association of T3737C INS gene with body weight (BW) was observed at 10 to 12 weeks of age and average daily gain (ADG) at 6-8 weeks of age. The SNP G662A of the GH gene was significantly associated (P less than 0.05) with BW of Mia chicken at ages from 7 to 14 weeks and with ADG (4-6; 6-8; 8-10; 10-12 and 2-16 weeks). Chicken with the GG genotype had greater BW and ADG compared to the other genotypes. The results demonstrated that this SNP G662A GH gene may be used as a candidate marker gene for genetic improvement of growth traits in Mia chicken breed.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shuang Liang ◽  
Yuanpeng Zhou ◽  
Huijun Wang ◽  
Yanyan Qian ◽  
Duan Ma ◽  
...  

Objective. To investigate the joint effects of the single nucleotide polymorphisms (SNPs) of genes in the folic acid pathway on homocysteine (Hcy) metabolism.Methods. Four hundred women with normal pregnancies were enrolled in this study. SNPs were identified by MassARRAY. Serum folic acid and Hcy concentration were measured. Analysis of variance (ANOVA) and support vector machine (SVM) regressions were used to analyze the joint effects of SNPs on the Hcy level.Results. SNPs of MTHFR (rs1801133 and rs3733965) were significantly associated with maternal serum Hcy level. In the different genotypes of MTHFR (rs1801133), SNPs of RFC1 (rs1051266), TCN2 (rs9606756), BHMT (rs3733890), and CBS (rs234713 and rs2851391) were linked with the Hcy level adjusted for folic acid concentration. The integrated SNPs scores were significantly associated with the residual Hcy concentration (RHC) (r=0.247). The Hcy level was significantly higher in the group with high SNP scores than that in other groups with SNP scores of less than 0.2 (P=0.000). Moreover, this difference was even more significant in moderate and high levels of folic acid.Conclusion. SNPs of genes in the folic acid pathway possibly affect the Hcy metabolism in the presence of moderate and high levels of folic acid.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 462
Author(s):  
Katarzyna Zaorska ◽  
Tomasz Szczapa ◽  
Maria Borysewicz-Lewicka ◽  
Michał Nowicki ◽  
Karolina Gerreth

Background: Several genes and single nucleotide polymorphisms (SNPs) have been associated with early childhood caries. However, they are highly age- and population-dependent and the majority of existing caries prediction models are based on environmental and behavioral factors only and are scarce in infants. Methods: We examined 6 novel and previously analyzed 22 SNPs in the cohort of 95 Polish children (48 caries, 47 caries-free) aged 2–3 years. All polymorphisms were genotyped from DNA extracted from oral epithelium samples. We used Fisher’s exact test, receiver operator characteristic (ROC) curve and uni-/multi-variable logistic regression to test the association of SNPs with the disease, followed by the neural network (NN) analysis. Results: The logistic regression (LogReg) model showed 90% sensitivity and 96% specificity, overall accuracy of 93% (p < 0.0001), and the area under the curve (AUC) was 0.970 (95%CI: 0.912–0.994; p < 0.0001). We found 90.9–98.4% and 73.6–87.2% prediction accuracy in the test and validation predictions, respectively. The strongest predictors were: AMELX_rs17878486 and TUFT1_rs2337360 (in both LogReg and NN), MMP16_rs1042937 (in NN) and ENAM_rs12640848 (in LogReg). Conclusions: Neural network prediction model might be a substantial tool for screening/early preventive treatment of patients at high risk of caries development in the early childhood. The knowledge of potential risk status could allow early targeted training in oral hygiene and modifications of eating habits.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Miguel Cordova-Delgado ◽  
María Loreto Bravo ◽  
Elisa Cumsille ◽  
Charlotte N. Hill ◽  
Matías Muñoz-Medel ◽  
...  

Abstract Background Fluoropyrimidine plus platinum chemotherapy remains the standard first line treatment for gastric cancer (GC). Guidelines exist for the clinical interpretation of four DPYD genotypes related to severe fluoropyrimidine toxicity within European populations. However, the frequency of these single nucleotide polymorphisms (SNPs) in the Latin American population is low (< 0.7%). No guidelines have been development for platinum. Herein, we present association between clinical factors and common SNPs in the development of grade 3–4 toxicity. Methods Retrospectively, 224 clinical records of GC patient were screened, of which 93 patients were incorporated into the study. Eleven SNPs with minor allelic frequency above 5% in GSTP1, ERCC2, ERCC1, TP53, UMPS, SHMT1, MTHFR, ABCC2 and DPYD were assessed. Association between patient clinical characteristics and toxicity was estimated using logistic regression models and classification algorithms. Results Reported grade ≤ 2 and 3–4 toxicities were 64.6% (61/93) and 34.4% (32/93) respectively. Selected DPYD SNPs were associated with higher toxicity (rs1801265; OR = 4.20; 95% CI = 1.70–10.95, p = 0.002), while others displayed a trend towards lower toxicity (rs1801159; OR = 0.45; 95% CI = 0.19–1.08; p = 0.071). Combination of paired SNPs demonstrated significant associations in DPYD (rs1801265), UMPS (rs1801019), ABCC2 (rs717620) and SHMT1 (rs1979277). Using multivariate logistic regression that combined age, sex, peri-operative chemotherapy, 5-FU regimen, the binary combination of the SNPs DPYD (rs1801265) + ABCC2 (rs717620), and DPYD (rs1801159) displayed the best predictive performance. A nomogram was constructed to assess the risk of developing overall toxicity. Conclusion Pending further validation, this model could predict chemotherapy associated toxicity and improve GC patient quality of life.


Sign in / Sign up

Export Citation Format

Share Document