scholarly journals Identification of Predictor Genes for Feed Efficiency in Beef Cattle by Applying Machine Learning Methods to Multi-Tissue Transcriptome Data

2021 ◽  
Vol 12 ◽  
Author(s):  
Weihao Chen ◽  
Pâmela A. Alexandre ◽  
Gabriela Ribeiro ◽  
Heidge Fukumasu ◽  
Wei Sun ◽  
...  

Machine learning (ML) methods have shown promising results in identifying genes when applied to large transcriptome datasets. However, no attempt has been made to compare the performance of combining different ML methods together in the prediction of high feed efficiency (HFE) and low feed efficiency (LFE) animals. In this study, using RNA sequencing data of five tissues (adrenal gland, hypothalamus, liver, skeletal muscle, and pituitary) from nine HFE and nine LFE Nellore bulls, we evaluated the prediction accuracies of five analytical methods in classifying FE animals. These included two conventional methods for differential gene expression (DGE) analysis (t-test and edgeR) as benchmarks, and three ML methods: Random Forests (RFs), Extreme Gradient Boosting (XGBoost), and combination of both RF and XGBoost (RX). Utility of a subset of candidate genes selected from each method for classification of FE animals was assessed by support vector machine (SVM). Among all methods, the smallest subsets of genes (117) identified by RX outperformed those chosen by t-test, edgeR, RF, or XGBoost in classification accuracy of animals. Gene co-expression network analysis confirmed the interactivity existing among these genes and their relevance within the network related to their prediction ranking based on ML. The results demonstrate a great potential for applying a combination of ML methods to large transcriptome datasets to identify biologically important genes for accurately classifying FE animals.

2020 ◽  
Vol 6 (3) ◽  
pp. 353-356
Author(s):  
Martin Golz ◽  
Sebastian Thomas ◽  
Adolf Schenka

AbstractGMLVQ (Generalized Matrix Relevance Learning Vector Quantization) is a method of machine learning with an adaptive metric. While training, the prototype vectors as well as the weight matrix of the metric are adapted simultaneously. The method is presented in more detail and compared with other machine learning methods employing a fixed metric. It was investigated how accurately the methods can assign the 6-channel EEG of 25 young drivers, who drove overnight in the simulation lab, to the two classes of mild and severe drowsiness. Results of cross-validation show that GMLVQ is at 81.7 ± 1.3 % mean classification accuracy. It is not as accurate as support-vector machines (SVM) and gradient boosting machines (GBM) and cannot exploit the potential of learning adaptive metrics in the case of EEG data. However, information is provided on the relevance of each signal feature from the weighting matrix.


2020 ◽  
Vol 12 (12) ◽  
pp. 1952 ◽  
Author(s):  
Mateo Gašparović ◽  
Dino Dobrinić

Mapping of green vegetation in urban areas using remote sensing techniques can be used as a tool for integrated spatial planning to deal with urban challenges. In this context, multitemporal (MT) synthetic aperture radar (SAR) data have not been equally investigated, as compared to optical satellite data. This research compared various machine learning methods using single-date and MT Sentinel-1 (S1) imagery. The research was focused on vegetation mapping in urban areas across Europe. Urban vegetation was classified using six classifiers—random forests (RF), support vector machine (SVM), extreme gradient boosting (XGB), multi-layer perceptron (MLP), AdaBoost.M1 (AB), and extreme learning machine (ELM). Whereas, SVM showed the best performance in the single-date image analysis, the MLP classifier yielded the highest overall accuracy in the MT classification scenario. Mean overall accuracy (OA) values for all machine learning methods increased from 57% to 77% with speckle filtering. Using MT SAR data, i.e., three and five S1 imagery, an additional increase in the OA of 8.59% and 13.66% occurred, respectively. Additionally, using three and five S1 imagery for classification, the F1 measure for forest and low vegetation land-cover class exceeded 90%. This research allowed us to confirm the possibility of MT C-band SAR imagery for urban vegetation mapping.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2066
Author(s):  
Swati Srivastava ◽  
Bryan Irvine Lopez ◽  
Himansu Kumar ◽  
Myoungjin Jang ◽  
Han-Ha Chai ◽  
...  

Hanwoo was originally raised for draft purposes, but the increase in local demand for red meat turned that purpose into full-scale meat-type cattle rearing; it is now considered one of the most economically important species and a vital food source for Koreans. The application of genomic selection in Hanwoo breeding programs in recent years was expected to lead to higher genetic progress. However, better statistical methods that can improve the genomic prediction accuracy are required. Hence, this study aimed to compare the predictive performance of three machine learning methods, namely, random forest (RF), extreme gradient boosting method (XGB), and support vector machine (SVM), when predicting the carcass weight (CWT), marbling score (MS), backfat thickness (BFT) and eye muscle area (EMA). Phenotypic and genotypic data (53,866 SNPs) from 7324 commercial Hanwoo cattle that were slaughtered at the age of around 30 months were used. The results showed that the boosting method XGB showed the highest predictive correlation for CWT and MS, followed by GBLUP, SVM, and RF. Meanwhile, the best predictive correlation for BFT and EMA was delivered by GBLUP, followed by SVM, RF, and XGB. Although XGB presented the highest predictive correlations for some traits, we did not find an advantage of XGB or any machine learning methods over GBLUP according to the mean squared error of prediction. Thus, we still recommend the use of GBLUP in the prediction of genomic breeding values for carcass traits in Hanwoo cattle.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arturo Moncada-Torres ◽  
Marissa C. van Maaren ◽  
Mathijs P. Hendriks ◽  
Sabine Siesling ◽  
Gijs Geleijnse

AbstractCox Proportional Hazards (CPH) analysis is the standard for survival analysis in oncology. Recently, several machine learning (ML) techniques have been adapted for this task. Although they have shown to yield results at least as good as classical methods, they are often disregarded because of their lack of transparency and little to no explainability, which are key for their adoption in clinical settings. In this paper, we used data from the Netherlands Cancer Registry of 36,658 non-metastatic breast cancer patients to compare the performance of CPH with ML techniques (Random Survival Forests, Survival Support Vector Machines, and Extreme Gradient Boosting [XGB]) in predicting survival using the $$c$$ c -index. We demonstrated that in our dataset, ML-based models can perform at least as good as the classical CPH regression ($$c$$ c -index $$\sim \,0.63$$ ∼ 0.63 ), and in the case of XGB even better ($$c$$ c -index $$\sim 0.73$$ ∼ 0.73 ). Furthermore, we used Shapley Additive Explanation (SHAP) values to explain the models’ predictions. We concluded that the difference in performance can be attributed to XGB’s ability to model nonlinearities and complex interactions. We also investigated the impact of specific features on the models’ predictions as well as their corresponding insights. Lastly, we showed that explainable ML can generate explicit knowledge of how models make their predictions, which is crucial in increasing the trust and adoption of innovative ML techniques in oncology and healthcare overall.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9656
Author(s):  
Sugandh Kumar ◽  
Srinivas Patnaik ◽  
Anshuman Dixit

Machine learning techniques are increasingly used in the analysis of high throughput genome sequencing data to better understand the disease process and design of therapeutic modalities. In the current study, we have applied state of the art machine learning (ML) algorithms (Random Forest (RF), Support Vector Machine Radial Kernel (svmR), Adaptive Boost (AdaBoost), averaged Neural Network (avNNet), and Gradient Boosting Machine (GBM)) to stratify the HNSCC patients in early and late clinical stages (TNM) and to predict the risk using miRNAs expression profiles. A six miRNA signature was identified that can stratify patients in the early and late stages. The mean accuracy, sensitivity, specificity, and area under the curve (AUC) was found to be 0.84, 0.87, 0.78, and 0.82, respectively indicating the robust performance of the generated model. The prognostic signature of eight miRNAs was identified using LASSO (least absolute shrinkage and selection operator) penalized regression. These miRNAs were found to be significantly associated with overall survival of the patients. The pathway and functional enrichment analysis of the identified biomarkers revealed their involvement in important cancer pathways such as GP6 signalling, Wnt signalling, p53 signalling, granulocyte adhesion, and dipedesis. To the best of our knowledge, this is the first such study and we hope that these signature miRNAs will be useful for the risk stratification of patients and the design of therapeutic modalities.


2021 ◽  
Author(s):  
Polash Banerjee

Abstract Wildfires in limited extent and intensity can be a boon for the forest ecosystem. However, recent episodes of wildfires of 2019 in Australia and Brazil are sad reminders of their heavy ecological and economical costs. Understanding the role of environmental factors in the likelihood of wildfires in a spatial context would be instrumental in mitigating it. In this study, 14 environmental features encompassing meteorological, topographical, ecological, in situ and anthropogenic factors have been considered for preparing the wildfire likelihood map of Sikkim Himalaya. A comparative study on the efficiency of machine learning methods like Generalized Linear Model (GLM), Support Vector Machine (SVM), Random Forest (RF) and Gradient Boosting Model (GBM) has been performed to identify the best performing algorithm in wildfire prediction. The study indicates that all the machine learning methods are good at predicting wildfires. However, RF has outperformed, followed by GBM in the prediction. Also, environmental features like average temperature, average wind speed, proximity to roadways and tree cover percentage are the most important determinants of wildfires in Sikkim Himalaya. This study can be considered as a decision support tool for preparedness, efficient resource allocation and sensitization of people towards mitigation of wildfires in Sikkim.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hengrui Chen ◽  
Hong Chen ◽  
Ruiyu Zhou ◽  
Zhizhen Liu ◽  
Xiaoke Sun

The safety issue has become a critical obstacle that cannot be ignored in the marketization of autonomous vehicles (AVs). The objective of this study is to explore the mechanism of AV-involved crashes and analyze the impact of each feature on crash severity. We use the Apriori algorithm to explore the causal relationship between multiple factors to explore the mechanism of crashes. We use various machine learning models, including support vector machine (SVM), classification and regression tree (CART), and eXtreme Gradient Boosting (XGBoost), to analyze the crash severity. Besides, we apply the Shapley Additive Explanations (SHAP) to interpret the importance of each factor. The results indicate that XGBoost obtains the best result (recall = 75%; G-mean = 67.82%). Both XGBoost and Apriori algorithm effectively provided meaningful insights about AV-involved crash characteristics and their relationship. Among all these features, vehicle damage, weather conditions, accident location, and driving mode are the most critical features. We found that most rear-end crashes are conventional vehicles bumping into the rear of AVs. Drivers should be extremely cautious when driving in fog, snow, and insufficient light. Besides, drivers should be careful when driving near intersections, especially in the autonomous driving mode.


2021 ◽  
pp. 289-301
Author(s):  
B. Martín ◽  
J. González–Arias ◽  
J. A. Vicente–Vírseda

Our aim was to identify an optimal analytical approach for accurately predicting complex spatio–temporal patterns in animal species distribution. We compared the performance of eight modelling techniques (generalized additive models, regression trees, bagged CART, k–nearest neighbors, stochastic gradient boosting, support vector machines, neural network, and random forest –enhanced form of bootstrap. We also performed extreme gradient boosting –an enhanced form of radiant boosting– to predict spatial patterns in abundance of migrating Balearic shearwaters based on data gathered within eBird. Derived from open–source datasets, proxies of frontal systems and ocean productivity domains that have been previously used to characterize the oceanographic habitats of seabirds were quantified, and then used as predictors in the models. The random forest model showed the best performance according to the parameters assessed (RMSE value and R2). The correlation between observed and predicted abundance with this model was also considerably high. This study shows that the combination of machine learning techniques and massive data provided by open data sources is a useful approach for identifying the long–term spatial–temporal distribution of species at regional spatial scales.


2021 ◽  
Author(s):  
Seong Hwan Kim ◽  
Eun-Tae Jeon ◽  
Sungwook Yu ◽  
Kyungmi O ◽  
Chi Kyung Kim ◽  
...  

Abstract We aimed to develop a novel prediction model for early neurological deterioration (END) based on an interpretable machine learning (ML) algorithm for atrial fibrillation (AF)-related stroke and to evaluate the prediction accuracy and feature importance of ML models. Data from multi-center prospective stroke registries in South Korea were collected. After stepwise data preprocessing, we utilized logistic regression, support vector machine, extreme gradient boosting, light gradient boosting machine (LightGBM), and multilayer perceptron models. We used the Shapley additive explanations (SHAP) method to evaluate feature importance. Of the 3,623 stroke patients, the 2,363 who had arrived at the hospital within 24 hours of symptom onset and had available information regarding END were included. Of these, 318 (13.5%) had END. The LightGBM model showed the highest area under the receiver operating characteristic curve (0.778, 95% CI, 0.726 - 0.830). The feature importance analysis revealed that fasting glucose level and the National Institute of Health Stroke Scale score were the most influential factors. Among ML algorithms, the LightGBM model was particularly useful for predicting END, as it revealed new and diverse predictors. Additionally, the SHAP method can be adjusted to individualize the features’ effects on the predictive power of the model.


Sign in / Sign up

Export Citation Format

Share Document