scholarly journals Chondrodysplasias With Multiple Dislocations Caused by Defects in Glycosaminoglycan Synthesis

2021 ◽  
Vol 12 ◽  
Author(s):  
Johanne Dubail ◽  
Valérie Cormier-Daire

Chondrodysplasias with multiple dislocations form a group of severe disorders characterized by joint laxity and multiple dislocations, severe short stature of pre- and post-natal onset, hand anomalies, and/or vertebral anomalies. The majority of chondrodysplasias with multiple dislocations have been associated with mutations in genes encoding glycosyltransferases, sulfotransferases, and transporters implicated in the synthesis or sulfation of glycosaminoglycans, long and unbranched polysaccharides composed of repeated disaccharide bond to protein core of proteoglycan. Glycosaminoglycan biosynthesis is a tightly regulated process that occurs mainly in the Golgi and that requires the coordinated action of numerous enzymes and transporters as well as an adequate Golgi environment. Any disturbances of this chain of reactions will lead to the incapacity of a cell to construct correct glycanic chains. This review focuses on genetic and glycobiological studies of chondrodysplasias with multiple dislocations associated with glycosaminoglycan biosynthesis defects and related animal models. Strong comprehension of the molecular mechanisms leading to those disorders, mostly through extensive phenotypic analyses of in vitro and/or in vivo models, is essential for the development of novel biomarkers for clinical screenings and innovative therapeutics for these diseases.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi50-vi50
Author(s):  
Tiantian Cui ◽  
Erica Hlavin Bell ◽  
Joseph McElroy ◽  
Kevin Liu ◽  
Pooja Manchanda Gulati ◽  
...  

Abstract BACKGROUND Glioblastomas (GBMs) are the most aggressive primary brain tumors, with an average survival time of less than 15 months. miRNAs are emerging as promising and novel biomarkers in GBM. The aims of this study are: 1) to investigate novel miRNAs biomarkers that affect tumorigenesis and therapeutic sensitivity, and 2) to study the underlying molecular mechanisms in GBM. METHODS Nanostring v3 was performed followed by univariable (UVA) and multivariable (MVA) analyses. Functional studies were conducted to define the role of miR-146a in GBM tumorigenesis and therapeutic response and the molecular mechanisms were investigated. RESULTS UVA analyses demonstrated that miR-146a is one of the top miRNAs that correlated with better prognosis in GBM patients (p=9.21E-05), which was independent of MGMT promoter methylation by MVA analyses (p< 0.001). miR-146a expression was significantly downregulated in recurrent GBM tumors compared with the paired primary GBM tumors (p=0.003). Overexpression of miR-146a significantly inhibited tumor cell growth and sensitized patient-derived primary GBM cells to temozolomide (TMZ) treatment in vitro, and showed statistically significant smaller tumor size (p< 0.01) and prolonged survival (p=0.001) in vivo. In addition, miR-146a is downregulated in glioma cancer stem cells, and overexpression of miR-146a significantly affected glioma cancer stem cell self-renewal. We also found that overexpression of miR-146a significantly inhibited the NF-κB, AKT, and ERK pathways. CONCLUSION Our data suggest, for the first time, that miR-146a predicts favorable prognosis for GBM patients and sensitizes primary GBM cells to TMZ treatment in vitro and in vivo through regulating glioma stem cells. Importantly, miR-146a may prove to be a master switch shutting off AKT, NF-κB, as well as other pathways and may overcome redundancies among these pathways leading to resistance. FUNDING: Bohnenn Fund (to PR), R01CA108633, R01CA169368, U10CA180850-01(NCI), Brain Tumor Funders Collaborative Grant, and The Ohio State University CCC (all to AC).


2021 ◽  
Author(s):  
Rachel M McLaughlin ◽  
Amanda Laguna ◽  
Ilayda Top ◽  
Christien Hernadez ◽  
Liane L Livi ◽  
...  

Stroke is a devastating neurological disorder and a leading cause of death and long-term disability. Despite many decades of research, there are still very few therapeutic options for patients suffering from stroke or its consequences. This is partially due to the limitations of current research models, including traditional in vitro models which lack the three-dimensional (3D) architecture and cellular make-up of the in vivo brain. 3D spheroids derived from primary postnatal rat cortex provide an in vivo-relevant model containing a similar cellular composition to the native cortex and a cell-synthesized extracellular matrix. These spheroids are cost-effective, highly reproducible, and can be produced in a high-throughput manner, making this model an ideal candidate for screening potential therapeutics. To study the cellular and molecular mechanisms of stroke in this model, spheroids were deprived of glucose, oxygen, or both oxygen and glucose for 24 hours. Both oxygen and oxygen-glucose deprived spheroids demonstrated many of the hallmarks of stroke, including a decrease in metabolism, an increase in neural dysfunction, and an increase in reactive astrocytes. Pretreatment of spheroids with the antioxidant agent N-acetylcysteine (NAC) mitigated the decrease in ATP seen after 24 hours of oxygen-glucose deprivation. Together, these results show the utility of our 3D cortical spheroid model for studying ischemic injury and its potential for screening stroke therapeutics.


2020 ◽  
Vol 18 (2) ◽  
pp. 153-166
Author(s):  
Fan-Cheng Kong ◽  
Chun-Lai Ma ◽  
Ming-Kang Zhong

An epigenetic effect mainly refers to a heritable modulation in gene expression in the short term but does not involve alterations in the DNA itself. Epigenetic molecular mechanisms include DNA methylation, histone modification, and untranslated RNA regulation. Antiepileptic drugs have drawn attention to biological and translational medicine because their impact on epigenetic mechanisms will lead to the identification of novel biomarkers and possible therapeutic strategies for the prevention and treatment of various diseases ranging from neuropsychological disorders to cancers and other chronic conditions. However, these transcriptional and posttranscriptional alterations can also result in adverse reactions and toxicity in vitro and in vivo. Hence, in this review, we focus on recent findings showing epigenetic processes mediated by antiepileptic drugs to elucidate their application in medical experiments and shed light on epigenetic research for medicinal purposes.


Blood ◽  
2013 ◽  
Vol 121 (3) ◽  
pp. 519-529 ◽  
Author(s):  
Guangwei Liu ◽  
Xuelian Hu ◽  
Bo Sun ◽  
Tao Yang ◽  
Jianfeng Shi ◽  
...  

Abstract Neutrophils are critically involved in host defense and tissue damage. Intrinsic molecular mechanisms controlling neutrophil differentiation and activities are poorly defined. Herein we found that p53-induced phosphatase 1(Wip1) is preferentially expressed in neutrophils among immune cells. The Wip1 expression is gradually up-regulated during the differentiation of myeloid precursors into mature neutrophils. Wip1-deficient mice and chimera mice with Wip1−/− hematopoietic cells had an expanded pool of neutrophils with hypermature phenotypes in the periphery. The in vivo and in vitro studies showed that Wip1 deficiency mainly impaired the developing process of myeloid progenitors to neutrophils in an intrinsic manner. Mechanism studies showed that the enhanced development and maturation of neutrophils caused by Wip1 deficiency were mediated by p38 MAPK-STAT1 but not p53-dependent pathways. Thus, our findings identify a previously unrecognized p53-independent function of Wip1 as a cell type-specific negative regulator of neutrophil generation and homeostasis through limiting the p38 MAPK-STAT1 pathway.


Pharmacology ◽  
2018 ◽  
Vol 102 (1-2) ◽  
pp. 42-52 ◽  
Author(s):  
Hande Karahan ◽  
Sevda Lüle ◽  
Pelin Kelicen-Uğur

Background/Aims: Decreasing levels of aromatase and seladin-1 could be one of the molecular mechanisms of Alzheimer’s disease (AD). Aromatase is an enzyme that catalyzes estrogen biosynthesis from androgen precursors, and seladin-1 is an enzyme that converts desmosterol to cholesterol, which is the precursor of all hormones. Verifying the potential relationship between these proteins and accordingly determining new therapeutic targets constitute the aims of this study. Methods: Changes in protein levels were compared in vitro in aromatase and seladin-1 inhibitor-administered human neuroblastoma (SH-SY5Y) cells in vivo in intracerebroventricular (icv) aromatase or seladin-1 inhibitor-administered rats, as well as in transgenic AD mice in which the genes encoding these proteins were knocked out. Results and Conclusions: In the cell cultures, we observed that seladin-1 protein levels increased after aromatase enzyme inhibition. The hippocampal aromatase protein levels decreased following chronic seladin-1 inhibition in icv inhibitor-administered rats; however, the aromatase levels in the dentate gyrus of seladin-1 knockout (SelKO) AD male mice increased. These findings indicate a partial relationship between these proteins and their roles in AD pathology.


2018 ◽  
Author(s):  
Benedikt Jacobs ◽  
Aline Pfefferle ◽  
Dennis Clement ◽  
Jodie P. Goodridge ◽  
Michelle L. Saetersmoen ◽  
...  

AbstractAdoptive transfer of allogeneic NK cells holds great promise for cancer immunotherapy. There is a variety of protocols to expand NK cells in vitro, most of which are based on stimulation with cytokines alone or in combination with feeder cells. Although IL-15 is essential for NK cell homeostasis in vivo, it is commonly used at supra-physiological levels to induce NK cell proliferation in vitro. As a result, adoptive transfer of such IL-15 addicted NK cells is associated with cellular stress due to sudden cytokine withdrawal. Here, we describe a dose-dependent addiction to IL-15 during in vitro expansion, leading to caspase-3 activation and profound cell death upon IL-15 withdrawal. NK cell addiction to IL-15 was tightly linked to the BCL-2/BIM ratio, which rapidly dropped during IL-15 withdrawal. Furthermore, we observed a proliferation-dependent induction of BIM short (BIM S), a highly pro-apoptotic splice variant of BIM, in IL-15 activated NK cells. These findings shed new light on the molecular mechanisms involved in NK cell apoptosis following cytokine withdrawal and may guide future NK cell priming strategies in a cell therapy setting.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


2019 ◽  
Vol 35 (6) ◽  
pp. 87-90
Author(s):  
S.V. Nikulin ◽  
V.A. Petrov ◽  
D.A. Sakharov

The real-time monitoring of electric capacitance (impedance spectroscopy) allowed obtaining evidence that structures which look like intestinal villi can be formed during the cultivation under static conditions as well as during the cultivation in microfluidic chips. It was shown in this work via transcriptome analysis that the Hh signaling pathway is involved in the formation of villus-like structures in vitro, which was previously shown for their formation in vivo. impedance spectroscopy, intestine, villi, electric capacitance, Hh The study was funded by the Russian Science Foundation (Project 16-19-10597).


2019 ◽  
Vol 26 (25) ◽  
pp. 4799-4831 ◽  
Author(s):  
Jiahua Cui ◽  
Xiaoyang Liu ◽  
Larry M.C. Chow

P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


Sign in / Sign up

Export Citation Format

Share Document