scholarly journals Use of Comparative Transcriptomics Combined With Physiological Analyses to Identify Key Factors Underlying Cadmium Accumulation in Brassica juncea L.

2021 ◽  
Vol 12 ◽  
Author(s):  
Dawei Zhang ◽  
Yunyan Du ◽  
Dan He ◽  
Dinggang Zhou ◽  
Jinfeng Wu ◽  
...  

The contamination of soils with cadmium (Cd) has become a serious environmental issue that needs to be addressed. Elucidating the mechanisms underlying Cd accumulation may facilitate the development of plants that accumulate both high and low amounts of Cd. In this study, a combination of phenotypic, physiological, and comparative transcriptomic analyses was performed to investigate the effects of different Cd concentrations (0, 5, 10, 30, 50 mg/kg) on Brassica juncea L. Our results suggest that B. juncea L. seedlings had a degree of tolerance to the 5 mg/kg Cd treatment, whereas higher Cd stress (10–50 mg/kg) could suppress the growth of B. juncea L. seedlings. The contents of soluble protein, as well as MDA (malondialdehyde), were increased, but the activities of CAT (catalase) enzymes and the contents of soluble sugar and chlorophyll were decreased, when B. juncea L. was under 30 and 50 mg/kg Cd treatment. Comparative transcriptomic analysis indicated that XTH18 (xyloglucan endotransglucosylase/hydrolase enzymes), XTH22, and XTH23 were down-regulated, but PME17 (pectin methylesterases) and PME14 were up-regulated, which might contribute to cell wall integrity maintenance. Moreover, the down-regulation of HMA3 (heavy metal ATPase 3) and up-regulation of Nramp3 (natural resistance associated macrophage proteins 3), HMA2 (heavy metal ATPase 2), and Nramp1 (natural resistance associated macrophage proteins 1) might also play roles in reducing Cd toxicity in roots. Taken together, the results of our study may help to elucidate the mechanisms underlying the response of B. juncea L. to various concentrations of Cd.

Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 904 ◽  
Author(s):  
Zhong-Wei Zhang ◽  
Yi-Ying Dong ◽  
Ling-Yang Feng ◽  
Zong-Lin Deng ◽  
Qiang Xu ◽  
...  

Oilseed rape (Brassica napus) is a Cadmium (Cd) hyperaccumulator. However, high-level Cd at the early seedling stage seriously arrests the growth of rape, which limits its applications. Brassica juncea had higher Cd accumulation capacity, but its biomass was lower, also limiting its applications. Previous studies have confirmed that Selenium (Se) can alleviate Cd toxicity. However, the regulatory mechanism of Se in different valence states of Cd accumulation was unclear. In this study, we investigated the ameliorating effects of three Se valence states, Na2SeO4 [Se(VI)], Na2SeO3 [Se(IV)] and Se-Met [Se(II)], to Cd toxicity by physiological and biochemical approaches in hydroponically-cultured Brassica juncea and Brassica napus seedlings. Although Se treatments slightly inhibited seedling Cd concentration, it tripled or quadrupled the Cd accumulation level per plant, because dry weight increased about four times more with Se and Cd application than with Cd treatment alone. Among the different valence states of Se, Se(II) had the most marked effect on reducing Cd toxicity as evidenced by decreased growth inhibition and Cd content. The application of Se(II) was effective in reducing Cd-induced reactive oxygen species accumulation, and promoted the antioxidant enzyme activity and photosynthesis of both Brassica species. In addition, Se(II) treatment increased the concentrations of Cd in the cell wall and soluble fractions, but the Cd concentration in the organelle part was reduced.


2021 ◽  
Vol 14 (1) ◽  
pp. 429
Author(s):  
Rongrong Ying ◽  
Bing Xia ◽  
Xiaowen Zeng ◽  
Rongliang Qiu ◽  
Yetao Tang ◽  
...  

Heavy metal pollution in farmland threatens human life. It is not clear whether crops can adsorb heavy metals. In this study, the cadmium accumulation and tolerance in Chinese cabbage Brassica pekinensis (cv. Xiaoza-56) and the known Cd-accumulator Brassica juncea in hydroponics and pot experiment were investigated. Furthermore, we evaluated their potential on the phytoextraction of Cd-contaminated soil. The hydroponics with 1–50 μM Cd concentrations showed that both B. juncea and B. pekinensis had high Cd accumulation and tolerance with translocation factor closed to 1 at Cd levels < 25 μM. The pot study conducted with 5 to 100 mg Cd kg−1 soil indicated that B. juncea showed less tolerance and accumulation to Cd than B. pekinensis, especially at higher Cd levels. The bioconcentration factor was much higher than 1 in both B. juncea and B. pekinensis grown in <40 mg Cd kg−1 soil without showing biomass reduction. In the model evaluation, the ability of B. juncea and B. pekinensis to reduce the initial soil Cd concentration of 20 and 5 mg kg−1 to specific targets with a lower or higher biomass of 4 or 20 t ha−1, respectively. The above results indicate that B. juncea and B. pekinensis (cv. Xiaoza-56), which the latter is a better candidate for Cd phytoextraction in moderated Cd-contaminated soil. The results provide a reference for Cd pollution control.


2014 ◽  
Vol 641-642 ◽  
pp. 1141-1145 ◽  
Author(s):  
Hong Li Huang ◽  
Lin Luo ◽  
Jia Chao Zhang ◽  
Pu Feng Qin ◽  
Man Yu ◽  
...  

Pot experiments were performed to investigate the effect of compost amendment on the mobility of zinc through analysis of Zn fractions in heavy metal contaminated soil. The results showed that the total Zn concentration decreased 8.11%, 10.15%, 16.15%, 20.05%, 7.28% and 5.02% after the amendment of 0, 20, 40, 60, 80, 100 g/kg compost to soil and Brassica juncea harvest, respectively. Zn was mostly concentrated in the residual fraction and Fe-Mn oxides fraction in soil. The percentage of Zn in water-soluble fraction, organic fraction and residual fraction had no correlation with the amount of compost amendment. The percentage of Zn in the exchangeable fraction decreased and the percentage of Zn in Fe-Mn oxides fractions increased obviously. Furthermore, the mobility factor of Zn decreased significantly from 19.20% without compost amendment to 19.09%, 18.70%, 18.15%, 16.45% and 16.12% after the amendment of 0, 20, 40, 60, 80, 100 g/kg compost to soil, the compost amendment could lowered the mobility and phytotoxicity of zinc through bound to Fe-Mn oxides.


2021 ◽  
Vol 11 (9) ◽  
pp. 4160
Author(s):  
Farheen Nazli ◽  
Xiukang Wang ◽  
Maqshoof Ahmad ◽  
Azhar Hussain ◽  
Bushra ◽  
...  

Untreated wastewater used for irrigating crops is the major source of toxic heavy metals and other pollutants in soils. These heavy metals affect plant growth and deteriorate the quality of edible parts of growing plants. Phytohormone (IAA) and exopolysaccharides (EPS) producing plant growth-promoting rhizobacteria can reduce the toxicity of metals by stabilizing them in soil. The present experiment was conducted to evaluate the IAA and EPS-producing rhizobacterial strains for improving growth, physiology, and antioxidant activity of Brassica juncea (L.) under Cd-stress. Results showed that Cd-stress significantly decreased the growth and physiological parameters of mustard plants. Inoculation with Cd-tolerant, IAA and EPS-producing rhizobacterial strains, however, significantly retrieved the inhibitory effects of Cd-stress on mustard growth, and physiology by up regulating antioxidant enzyme activities. Higher Cd accumulation and proline content was observed in the roots and shoot tissues upon Cd-stress in mustard plants while reduced proline and Cd accumulation was recorded upon rhizobacterial strains inoculation. Maximum decrease in proline contents (12.4%) and Cd concentration in root (26.9%) and shoot (29%) in comparison to control plants was observed due to inoculation with Bacillus safensis strain FN13. The activity of antioxidant enzymes was increased due to Cd-stress; however, the inoculation with Cd-tolerant, IAA-producing rhizobacterial strains showed a non-significant impact in the case of the activity of superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) in Brassica juncea (L.) plants under Cd-stress. Overall, Bacillus safensis strain FN13 was the most effective strain in improving the Brassica juncea (L.) growth and physiology under Cd-stress. It can be concluded, as the strain FN13 is a potential phytostabilizing biofertilizer for heavy metal contaminated soils, that it can be recommended to induce Cd-stress tolerance in crop plants.


2021 ◽  
Author(s):  
Bin Tang ◽  
Meijie Luo ◽  
Yunxia Zhang ◽  
Huanle Guo ◽  
Jingna Li ◽  
...  

SummaryCadmium (Cd) accumulation in maize grains is detrimental to human health. Developing maize varieties with low-Cd contents via marker-assisted selection is important for ensuring the production of maize grains safe for consumption. However, the key gene controlling maize grain Cd accumulation has not been cloned. In this study, we identified two major loci for maize grain Cd accumulation (qCd1 and qCd2) on chromosome 2 during a genome-wide association study (GWAS). The qCd1 locus was analyzed by bulked segregant RNA-seq and fine mapping with a biparental segregating population of Jing724 (low-Cd line) and Mo17 (high-Cd line). The ZmCd1 candidate gene in the qCd1 locus encodes a vacuolar membrane-localized heavy metal P-type ATPase transporter, ZmHMA3, which is orthologous to the tonoplast Cd transporter OsHMA3. Genomic DNA sequence and transcript analyses suggested that a transposon in intron 1 of ZmCd1 is responsible for the abnormal amino acid sequence in Mo17. An EMS mutant analysis and an allelism test confirmed ZmCd1 influences maize grain Cd accumulation. The natural variations in ZmCd1 were used to develop four PCR-based molecular markers, which revealed five ZmCd1 haplotypes in the GWAS population. The molecular markers were also used to predict the grain Cd contents in commonly cultivated maize germplasms in China. The predicted Cd contents for 36 inbred lines and 13 hybrids were consistent with the measured Cd contents. Furthermore, several low-Cd elite inbred lines and hybrids were identified, including Jing2416, MC01, Jingnonke728, and Jingke968. Therefore, the molecular markers developed in this study are applicable for molecular breeding and developing maize varieties with low grain Cd contents.


Author(s):  
Diana FLORESCU ◽  
Andreea IORDACHE ◽  
Claudia SANDRU ◽  
Elena HORJ ◽  
Roxana IONETE ◽  
...  

As a result of accidental spills or leaks, industrial wastes may enter in soil and in streams. Some of the contaminants may not be completely removed by treatment processes; therefore, they could become a problem for these sources. The use of synthetic products (e.g. pesticides, paints, batteries, industrial waste, and land application of industrial or domestic sludge) can result in heavy metal contamination of soils.


2014 ◽  
Vol 23 (3) ◽  
pp. 213-219 ◽  
Author(s):  
Moulay Laârabi El Hachimi ◽  
Mohamed Fekhaoui ◽  
Abdellah El Abidi ◽  
Ali Rhoujatti

2013 ◽  
Vol 162 (2) ◽  
pp. 927-939 ◽  
Author(s):  
Naoki Yamaji ◽  
Jixing Xia ◽  
Namiki Mitani-Ueno ◽  
Kengo Yokosho ◽  
Jian Feng Ma

2014 ◽  
Vol 70 (12) ◽  
pp. 2015-2021 ◽  
Author(s):  
S. Chang ◽  
H. Shu

The removal of cadmium (Cd) from wastewater before it is released from factories is important for protecting human health. Although some researchers have developed engineered bacteria, the resistance of these engineered bacteria to Cd have not been improved. In this study, two key genes involved in glutathione synthesis (gshA and gshB), a serine acetyltransferase gene (cysE), a Thlaspi caerulescens phytochelatin synthase gene (TcPCS1), and a heavy metal ATPase gene (TcHMA3) were transformed into Escherichia coli BL21. The resistance of the engineered bacterium to Cd was significantly greater than that of the initial bacterium and the Cd accumulation in the engineered bacterium was much higher than in the initial bacterium. In addition, the Cd resistance of the bacteria harboring gshB, gshA, cysE, and TcPCS1 was higher than that of the bacteria harboring gshA, cysE, and TcPCS1. This finding demonstrated that gshB played an important role in glutathione synthesis and that the reaction catalyzed by glutathione synthase was the limiting step for producing phytochelatins. Furthermore, TcPCS1 had a greater specificity and a higher capacity for removing Cd than SpPCS1, and TcHMA3 not only played a role in T. caerulescens but also functioned in E. coli.


Sign in / Sign up

Export Citation Format

Share Document