scholarly journals Suppression of ANT2 by miR-137 Inhibits Prostate Tumorigenesis

2021 ◽  
Vol 12 ◽  
Author(s):  
Heyuan Zhang ◽  
Nanhui Chen ◽  
Zhihai Deng ◽  
Yang Mai ◽  
Limin Deng ◽  
...  

Prostate cancer (PCa) is a serious disease that affects men’s health. To date, no effective and long-lasting treatment option for this condition is available in clinical practice. ANT2 is highly expressed in a variety of hormone-related cancers, but its relationship and regulatory mechanism with PCa are unclear. In this study, we found that ANT2 expression was significantly upregulated in PCa tissues relative to control samples. Genetic knockdown of ANT2 effectively inhibited, while overexpression promoted, proliferation, migration, and invasion of PCa cells. In addition, miR-137 expression was reduced in prostate cancer tissues relative to control tissues. We identified a regulatory site for miR-137 in the 3′-UTR of ANT2 mRNA; luciferase reporter assays indicated that ANT2 is a direct target gene for miR-137. Transfecting cells with miR-137 mimics and/or an ANT2-encoding plasmid revealed that ANT2 promotes proliferation, migration, and invasion of PCa, whereas co-expression of miR-137 mimics inhibited these behaviors. These observations suggest that miR-137 mimics inhibit development of PCa by antagonizing expression of ANT2. Furthermore, tumorigenic assays in nude mice showed that miR-137 inhibitors abolished the inhibitory effect of ANT2 knockdown on PCa tumor growth. Collectively, our findings suggest that ANT2, a target gene of miR-137, is intimately involved in development of PCa, providing new evidence for the mechanism underlying pathogenesis of PCa as well as new options for targeted therapy.

2021 ◽  
Vol 49 (5) ◽  
pp. 030006052110143
Author(s):  
Mingcui Zang ◽  
Xun Guo ◽  
Manqiu Chen

Objective MicroRNAs (miRNAs) regulate prostate tumorigenesis and progression by involving different molecular pathways. In this study, we examined the role of miR-572 in prostate cancer (PCa). Methods The proliferation rates of LNCaP and PC-3 PCa cells were studied using MTT assays. Transwell migration and Matrigel invasion assays were performed to evaluate cell migration and invasion, respectively. Protein expression levels were examined using western blotting. Docetaxel-induced apoptosis was evaluated by Caspase-Glo3/7 assays. The putative miR-572 binding site in the phosphatase and tensin homolog (PTEN) 3ʹ untranslated region (3ʹ UTR) was assessed with dual-luciferase reporter assays. Additionally, miR-572 expression levels in human PCa tissues were examined by qRT-PCR assays. Results Upregulation of miR-572 promoted proliferation, migration, and invasion of PCa cells. Overexpression of miR-572 decreased sensitivity of PCa cells to docetaxel treatment by reducing docetaxel-induced apoptosis. MiR-572 can regulate migration and invasion in PCa cells. Furthermore, miR-572 could regulate expression of PTEN and p-AKT in PCa cells by directly binding to the PTEN 3ʹ UTR. MiR-572 expression levels were increased in human PCa tissues and associated with PCa stage. Conclusions miR-572 displayed essential roles in PCa tumor growth and its expression level may be used to predict docetaxel treatment in these tumors.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Enhui Ma ◽  
Qianqian Wang ◽  
Jinhua Li ◽  
Xinqi Zhang ◽  
Zhenjia Guo ◽  
...  

Abstract Background Prostate cancer (PCa) is a kind of malignancy occurring in the prostate gland. Substantial researches have proved the major role of long noncoding RNAs (lncRNAs) in PCa. However, the role of long intergenic non-protein coding RNA 1006 (LINC01006) in PCa has not been investigated yet. Methods RT-qPCR was used to examine the expression levels of LINC01006 and its downstream targets. The function of LINC01006 in PCa was tested by in vitro and in vivo assays. With application of RNA pull down, RNA immunoprecipitation (RIP) and luciferase reporter assays, the interaction among LINC01006, miR-34a-5p and disheveled associated activator of morphogenesis 1 (DAAM1) were verified. Results LINC01006 expression presented high in PCa cell lines. LINC01006 silencing suppressed cell proliferative, migratory, invasive capacities while accelerated apoptotic rate. Besides, LINC01006 knockdown also suppressed tumor growth and metastasis in vivo. Furthermore, miR-34a-5p, a tumor suppressor in PCa, was sponged by LINC01006. Moreover, DAAM1 was targeted by miR-34a-5p and promoted PCa progression. More intriguingly, rescue assays suggested that the inhibitory effect of LINC01006 knockdown on PCa development was offset by DAAM1 overexpression. Conclusions LINC01006 promoted PCa progression by sponging miR-34a-5p to up-regulate DAAM1, providing a novel target for PCa therapy.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Teng Ma ◽  
Huaidong Liu ◽  
Yan Liu ◽  
Tingting Liu ◽  
Hui Wang ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC), in part because of the high metastasis rate, is one of the most prevalent causes of malignancy-related mortality globally. Ubiquitin specific peptidase 6 N-terminal like (USP6NL) has been unmasked to be implicated in some human cancers. However, the precise biological function of USP6NL in TNBC has not been defined. Methods RNA expression was examined by real-time quantitative PCR (RT-qPCR), while USP6NL protein level was tested through western blot. Besides, cell proliferation was assessed by using colony formation assay, whereas cell apoptosis estimated by flow cytometry analysis, JC-1 assay and TUNEL assay. Transwell assays were adopted to detect the migration and invasion of indicated TNBC cells. Immunofluorescence (IF) assay evaluated epithelial-mesenchymal transitions (EMT) progress in TNBC. Further, RNA immunoprecipitation (RIP), RNA pull down and luciferase reporter assays were implemented for measuring the mutual interplay among USP6NL, miR-142-3p and long intergenic non-protein coding RNA 689 (LINC00689). Results Elevated USP6NL level was uncovered in TNBC cells. RNA interference-mediated knockdown of USP6NL inhibited TNBC cell growth, motility and EMT. Further, USP6NL was proved as the target of a tumor-inhibitor miR-142-3p, and LINC00689 augmented USP6NL expression by absorbing miR-142-3p. Importantly, miR-142-3p deficiency or USP6NL overexpression fully abolished the inhibitory effect of LINC00689 silence on TNBC cellular behaviors. Conclusion All data revealed the important role of USP6NL/LINC00689/miR-142-3p signaling in TNBC. The findings might provide a new and promising therapeutic biomarker for treating patients with TNBC.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Min Xie ◽  
Qi Fu ◽  
Pin-pin Wang ◽  
Yu-lan Cui

Background. Growing studies have demonstrated that long noncoding RNAs (lncRNAs) play important roles in tumor progression. In this study, we aimed to explore the potential roles of lncRNA LINC00958 (LINC00958) and its biological functions in epithelial ovarian cancer (EOC). Methods. The expression of LINC00958 in 11 cases of EOC and adjacent nontumor specimens and five cell lines was detected by qRT-PCR. CCK-8, colony formation, and flow cytometry assays were conducted to study the cell viabilities of EOC cells. Wound scratch and transwell analyses were carried out for the examination of cell invasion and migration of EOC cells. The targeting associations between LINC00958 and STAT1 were demonstrated by ChIP analyses combined with luciferase reporter assays. The related proteins of Wnt/β-catenin signaling were determined using RT-PCR. Results. Higher levels of LINC00958 were observed in EOC tissues and cell lines. Our data also revealed that high LINC00958 expression was partly induced by STAT1. Functionally, knockdown of LINC00958 suppressed the proliferation, migration, and invasion of EOC cells. Mechanistic investigation showed that the inhibitory effect of LINC00958 knockdown on EOC cells was mediated by the Wnt/β-catenin signaling. Conclusion. Our findings suggested that STAT1-induced overexpression of LINC00958 promoted EOC progression by modulating Wnt/β-catenin signaling.


2020 ◽  
Author(s):  
Yujia Yang ◽  
Li Yuan ◽  
Bing Yang

Abstract Background: Ovarian cancer is one of the most common malignancy of the female reproductive system. Hsa‐miR‐15a‐5p (miR‐15a-5p) has been reported with tumor‐suppressing roles in various cancers. This study aims to determine the role of miR-15a-5p during the progression of ovarian cancer. Methods: We used bioinformatics, luciferase reporter assays, wound-healing, transwell invasion assays, quantitative Real-time polymerase chain reaction (qRT-PCR) and Western blot to dissect the molecular mechanism of how miR-15a-5p may cause metastasis in ovarian cancer. Results: The upregulation of miR‐15a-5p inhibited growth, migration and invasion in ovarian cancer cells. Furthermore, miR-15a-5p suppressed epithelial mesenchymal transition (EMT) of ovarian cancer cell in vitro, evidenced by expression alteration of E‐cadherin and vimentin. Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) was identified as the direct target of miR-15a-5p and downregulated by miR-15a-5p. The inhibitory effect of miR-15a-5p on migration, invasion and EMT was rescued by PELP1. Additionally, downregulation of PELP1 mimicked the suppressive impact of miR-15a-5p on ovarian carcinoma cells. Conclusions: Our data indicated that miR-15a-5p inhibited migration, invasion and EMT of ovarian cancer cells by targeting PELP1, which might relate to the progression and metastasis of ovarian cancer.


2018 ◽  
Vol 49 (4) ◽  
pp. 1539-1550 ◽  
Author(s):  
Jin-Hua He ◽  
Yu-Guang Li ◽  
Ze-Ping Han ◽  
Jia-Bin Zhou ◽  
Wei-Ming Chen ◽  
...  

Background/Aims: Circular RNAs (circRNAs), a type of RNA that is widely expressed in human cells, have essential roles in the development and progression of cancer. CircRNAs contain microRNA (miRNA) binding sites and can function as miRNA sponges to regulate gene expression by removing the inhibitory effect of an miRNA on its target gene. Methods: We used the bioinformatics software TargetScan and miRanda to predict circRNA-miRNA and miRNAi-Mrna interactions. Rate of inhibiting of proliferation was measured using a WST-8 cell proliferation assay. Clone formation ability was assessed with a clone formation inhibition test. Cell invasion and migration capacity was evaluated by performing a Transwell assay. Relative gene expression was assessed using quantitative real-time polymerase chain reaction and relative protein expression levels were determined with western blotting. circRNA and miRNA interaction was confirmed by dual-luciferase reporter and RNA-pull down assays. Results: In the present study, the miRNA hsa-miR-21-5p was a target of circRNA-ACAP2, and T lymphoma invasion and metastasis protein 1 (Tiam1) was identified as a target gene of hsa-miR-21-5p. CircRNA-ACAP2 and Tiam1 were shown to be highly expressed in colon cancer tissue and colon cancer SW480 cells, but miR-21-5p was expressed at a low level. SW480 cell proliferation was suppressed when the expression of circRNA-ACAP2 and Tiam1 was decreased and the expression of miR-21-5p was increased in vivo and in vitro. SW480 cell migration and invasion were also inhibited under the same circumstance. The circRNA-ACAP2 interaction regulated the expression of miR-21-5p, and miR-21-5p regulated the expression of Tiam1. Down-regulation of circRNA-ACAP2 promoted miR-21-5p expression, which further suppressed the transcription and translation of Tiam1. Conclusion: The present study shows that the circRNA-ACAP2/hsa-miR-21-5p/Tiam1 regulatory feedback circuit could affect the proliferation, migration, and invasion of colon cancer SW480 cells. This was probably due to the fact that circRNA-ACAP2 could act as a miRNA sponge to regulate Tiam1 expression by removing the inhibitory effect of miR-21-5p on Tiam1 expression. The results from this study have revealed new insights into the pathogenicity of colon cancer and may provide novel therapeutic targets for the treatment of colon cancer.


2022 ◽  
Vol 12 (2) ◽  
pp. 239-247
Author(s):  
Kun Liu ◽  
Wanjing Yu ◽  
Yaoyao Tang ◽  
Chao Chen

Background: Bronchial asthma is a common chronic inflammatory disease of the respiratory tract, whose pathogenesis involves a variety of factors. The purpose of this study was to explore the effect of traditional Chinese medicine Glycyrrhizin (Gly) on lipopolysaccharide (LPS)-induced inflammation and apoptosis of bronchial epithelial cells and its action mechanism. Methods: Gly (20 µM) was used to treat bronchial epithelial BEAS-2B cells stimulated with LPS. The expression of SRC and miR-146b-5p in BEAS-2B cells was modified by the respective transfections with pcDNA-SRC, miR-146b-5p mimic and miR-146b-5p inhibitor. STRING and Starbase online databases were used to predict the relationship between Gly, miR-146b-5p and SRC. Luciferase reporter assays were performed to verify the binding of miR-146b-5p to SRC. The viability, inflammatory response and apoptosis of BEAS-2B cells were examined by CCK-8, ELISA and Tunel assays respectively. The expressions of apoptosis-related proteins (Bcl-2, Bax, caspase3 and Cleaved-caspase3), SRC and miR-146b-5p were detected by qRT-PCR or western blotting. Results: Gly inhibited LPS-induced inflammation and apoptosis in BEAS-2B cells. The interaction between Gly and SRC was predicted by STRING. SRC expression was high in BEAS-2B cells stimulated with LPS and could be negatively regulated by Gly. Overexpression of SRC effectively alleviated the inhibitory effect of Gly on LPS-induced damages in BEAS-2B cells. In addition, results of luciferase reporter assays verified SRC as a direct target gene of miR-146b-5p. The expression level of miR-146b-5p was downregulated by LPS stimulation in BEAS-2B cells. Gly decreased the expression of SRC in LPS-stimulated BEAS-2B cells. These results could all be reversed by miR-146b-5p knockdown. Conclusion: Gly decreases the expression of SRC by upregulating the level of miR-146b-5p, thus alleviating the inflammation and apoptosis of bronchial epithelial cells treated with LPS. Our results provide a new theoretical basis for applying Gly to the clinical management of asthma.


2019 ◽  
Vol 39 (10) ◽  
Author(s):  
Ping Chen ◽  
Tianrong Xing ◽  
Qingdong Wang ◽  
Ai Liu ◽  
Haiping Liu ◽  
...  

Abstract Recently, many mircroRNAs (miRNAs) involved in the development and progression of cancer have been reported to regulate cell growth and metastasis, including microRNA-202 (miR-202). The purpose of the present study was to elucidate the effect of miR-202 on endometrial carcinoma (EC) cell migration and invasion. First, qRT-PCR showed that miR-202 was down-regulated in EC tissues, which was associated with poor prognosis in EC patients. Functionally, transwell assay indicated that miR-202 inhibited cell migration and invasion in EC cells. In addition, miR-202 also blocked epithelial–mesenchymal transition (EMT) through suppressing N-cadherin and Vimentin expressions and promoting E-cadherin expression. Moreover, the dual-luciferase reporter assay showed that fibroblast growth factor 2 (FGF2) is a direct target gene for miR-202 in EC cells. Furthermore, up-regulation of FGF2 attenuated the inhibitory effect of miR-202 on cell migration and invasion in EC. Besides that, miR-202 inactivated the Wnt/β-catenin signaling by suppressing β-catenin expression in EC. In conclusion, miR-202 inhibited cell migration and invasion by targeting FGF2 and inactivating the Wnt/β-catenin signaling in EC.


2020 ◽  
Author(s):  
Enhui Ma ◽  
Qianqian Wang ◽  
Jinhua Li ◽  
Xinqi Zhang ◽  
Zhenjia Guo ◽  
...  

Abstract Background: Prostate cancer (PCa) is a kind of malignancy occurring in the prostate gland. Substantial researches have proved the major role of long noncoding RNAs (lncRNAs) in PCa. However, the role of long intergenic non-protein coding RNA 1006 (LINC01006) in PCa has not been investigated yet.Methods: RT-qPCR was used to examine the expression levels of LINC01006 and its downstream targets. The function of LINC01006 in PCa was tested by in vitro and in vivo assays. With application of RNA pull down, RNA immunoprecipitation (RIP) and luciferase reporter assays, the interaction among LINC01006, miR-34a-5p and disheveled associated activator of morphogenesis 1 (DAAM1) were verified.Results: LINC01006 expression presented high in PCa cell lines. LINC01006 silencing suppressed cell proliferative, migratory, invasive capacities while accelerated apoptotic rate. Besides, LINC01006 knockdown also suppressed tumor growth and metastasis in vivo. Furthermore, miR-34a-5p, a tumor suppressor in PCa, was sponged by LINC01006. Moreover, DAAM1 was targeted by miR-34a-5p and promoted PCa progression. More intriguingly, rescue assays suggested that the inhibitory effect of LINC01006 knockdown on PCa development was offset by DAAM1 overexpression.Conclusions: LINC01006 promoted PCa progression by sponging miR-34a-5p to up-regulate DAAM1, providing a novel target for PCa therapy.


2020 ◽  
Author(s):  
peng zheng ◽  
Zi cheng Lin Liu ◽  
Fan Hu ◽  
Ying Chen ◽  
Zhuo Chen ◽  
...  

Abstract Background HOTAIR, as one of the few well-studied oncogenic lncRNAs, is involved in human tumorigenesis and is dysregulated in most human cancers. The transcription co-activator factor YAP1 is broadly expressed in many tissues, and promotes cancer metastasis and progression. However, the precise biological roles of HOTAIR and YAP1 in cancer cells remain unclear. Methods The expression levels of HOTAIR and YAP1 were measured by quantitative PCR (qPCR), immunoblotting. Wound-healing and transwell assays were used to examine the invasive abilities of HeLa cells. Luciferase reporter assays and CHIP were used to determine how YAP1 regulates RPL23. A xenograft mouse mode was used to assess the correlation between HOTAIR and YAP1 in vivo. Result In this study, we showed that HOTAIR regulates H3K27 histone modification in the promoter of miR-200a to mediate miR-200a expression byrecruiting EZH2. YAP1, as a potential target gene of miR-200a, aggravated the effects of miR-200a on the migration and invasion of HeLa cells. YAP1 activated the transcription of RPL23, which is a novel target of YAP1 transcriptional regulation. Agreement with this, the expression of YAP1 and RPL23 was dramatically decreased after injecting HeLa cells transfected with siHOTAIR in a xenograft mouse model. Conclusion These elucidates that HOTAIR, as an oncogenic lncRNA, recruits EZH2 to reduce miR-200a-3p expression via H3k27 trimethylation in the miR-200a-3p promoter. As a target gene of miR-200a-3p,YAP1 then promotes the migration and invasion of HeLa cells by mediating the downstream transcription of RPL23 which normally functions as a cancer-promoting factor. Accordingly, we propose a novel model of the molecular mechanism by which HOTAIR promotes the migration and invasion of cancer cells involving the miR-200a-3p/YAP1/RPL23 axis.


Sign in / Sign up

Export Citation Format

Share Document