scholarly journals Key Regulatory Differentially Expressed Genes in the Blood of Atrial Septal Defect Children Treated With Occlusion Devices

2021 ◽  
Vol 12 ◽  
Author(s):  
Bo-Ning Li ◽  
Quan-Dong Tang ◽  
Yan-Lian Tan ◽  
Liang Yan ◽  
Ling Sun ◽  
...  

Atrial septal defects (ASDs) are the most common types of cardiac septal defects in congenital heart defects. In addition to traditional therapy, interventional closure has become the main treatment method. However, the molecular events and mechanisms underlying the repair progress by occlusion device remain unknown. In this study, we aimed to characterize differentially expressed genes (DEGs) in the blood of patients treated with occlusion devices (metal or poly-L-lactic acid devices) using RNA-sequencing, and further validated them by qRT-PCR analysis to finally determine the expression of key mediating genes after closure of ASD treatment. The result showed that total 1,045 genes and 1,523 genes were expressed differently with significance in metal and poly-L-lactic acid devices treatment, respectively. The 115 overlap genes from the different sub-analyses are illustrated. The similarities and differences in gene expression reflect that the body response process involved after interventional therapy for ASDs has both different parts that do not overlap and the same part that crosses. The same portion of body response regulatory genes are key regulatory genes expressed in the blood of patients with ASDs treated with closure devices. The gene ontology enrichment analysis showed that biological processes affected in metal device therapy are immune response with CXCR4 genes and poly-L-lactic acid device treatment, and the key pathways are nuclear-transcribed mRNA catabolic process and proteins targeting endoplasmic reticulum process with ribosomal proteins (such as RPS26). We confirmed that CXCR4, TOB1, and DDIT4 gene expression are significantly downregulated toward the pre-therapy level after the post-treatment in both therapy groups by qRT-PCR. Our study suggests that the potential role of CXCR4, DDIT4, and TOB1 may be key regulatory genes in the process of endothelialization in the repair progress of ASDs, providing molecular insights into this progress for future studies.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2435-2435
Author(s):  
Delphine Rossille ◽  
Céline Pangault ◽  
Xavier Cahu ◽  
Thierry Lamy ◽  
Burgun Anita ◽  
...  

Abstract Abstract 2435 DLBCLs are the most prevalent lymphomas in adults and great advances have been made in understanding molecular effects on tumor cells as well as tissue environment, leading to determining gene prognosis signatures using transcriptional profiling techniques. As blood cells interact with cells in almost all tissues in the body, blood-derived total RNA gene expressions have been investigated for the past years including for solid cancers [Clin Cancer Res. 2006:3374.], infections [Nature 2010;446:973.] and autoimmune disorders [Genes Immun. 2010;11:269., Immunity 2008;29:150.]. Blood-based microarray approaches were able to identify differentially expressed genes distinguishing patients from healthy volunteers. Interested in the potential of this noninvasive and easy-to-use technique, we hypothesized that aggressive DLBCLs at diagnosis cause molecular perturbations on the whole blood allowing identifying gene expression differentiation compared to healthy controls. Whole blood was collected into PAXgene™ Blood RNA tubes ensuring blood stabilization and sent within 24 hours to be stored at −80°C before extraction. Our study involved high-quality RNA samples from 75 DLBCL patients taken at diagnosis prior to any anti-cancer treatment and 87 healthy volunteers, sex and gender matched. All patients were less than 60 and enrolled in a multicentric & prospective clinical trial for aggressive form of DLBCL, GOELAMS 075, which compares the autologous stem cell treatment to regular R-CHOP procedure. The median age was 52 for patients and 48 for controls. Gene expression profiling (GEP) was assessed using Affymetrix GeneChip® Human Exon 1.0 ST arrays. Unsupervised hierarchical clustering analysis (HCA) distinguished DLBCLs from controls. Two gene lists were identified based on HCA (Figure 1): listA consisted in 3,323 upregulated genes for a subgroup of patients and inversely, listB in 2,966 upregulated genes for controls. Canonical pathways were generated for both lists for genes meeting p<5% and FC >1.2 through the use of IPA (Ingenuity® Systems). The upregulated genes for patients (listA) were found associated with cytokine signaling pathways (Interleukins, NF-κB) while the down-regulated genes (listB) were implicated in T lymphocytes signaling pathways. Further investigations of the dataset by univariate analysis (Mann-Whitney test, FDR<5%, FC >1.5) found 1047 differentially expressed genes, confirming the systemic alteration. A set of 20 genes, selected as the best predictive genes for which the misclassification error rate is minimal, was able to discriminate DLBCLs from control samples (sensitivity= 88% & specificity=95%). No correlation was found between genes and biological parameters such as hemoglobin, leucocytes, lymphocytes, platelets or polynuclear neutrophils. The down-regulated genes were located in the nucleus and involved in transcription deregulation, DNA repair and apoptosis. Upregulated genes were related to the immune response as well as the inflammatory response with for instance S100 proteins which are implicated in myeloid-derived suppressor cell biology. Conclusion: Despite the complex mixture of cell types in blood, whole blood has shown strong systemic perturbations in DLBCLs at diagnosis. Biological investigation indicated an over-expression of the inflammation and immune responses combined to perturbations of the T-lymphocyte pattern. Our findings concerning inflammation-related gene expression including NF-κB activation and upregulated cytokine transcripts, with for instance IL-1, IL-6 & IL-10, invite us to determine whether a specific DLBCL-induced inflammation process exists compared to other nonmalignant diseases [Clin Microbiol Rev. 2002 Jul; 15(3):414-29]. Comparison to other lymphoma and inflammatory diseases as well as with tumor status are under way allowing to better characterizing DLBCL-specific biomarkers. These results shed new lights on DLBCL biology deciphering disease's heterogeneity at the RNA whole blood level. They encourage us to investigate whole blood GEP for prognosis and as a new parameter useful for disease classification. Disclosures: No relevant conflicts of interest to declare.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2374
Author(s):  
Joanna Sajewicz-Krukowska ◽  
Jan Paweł Jastrzębski ◽  
Maciej Grzybek ◽  
Katarzyna Domańska-Blicharz ◽  
Karolina Tarasiuk ◽  
...  

Astrovirus infections pose a significant problem in the poultry industry, leading to multiple adverse effects such as a decreased egg production, breeding disorders, poor weight gain, and even increased mortality. The commonly observed chicken astrovirus (CAstV) was recently reported to be responsible for the “white chicks syndrome” associated with an increased embryo/chick mortality. CAstV-mediated pathogenesis in chickens occurs due to complex interactions between the infectious pathogen and the immune system. Many aspects of CAstV–chicken interactions remain unclear, and there is no information available regarding possible changes in gene expression in the chicken spleen in response to CAstV infection. We aim to investigate changes in gene expression triggered by CAstV infection. Ten 21-day-old SPF White Leghorn chickens were divided into two groups of five birds each. One group was inoculated with CAstV, and the other used as the negative control. At 4 days post infection, spleen samples were collected and immediately frozen at −70 °C for RNA isolation. We analyzed the isolated RNA, using RNA-seq to generate transcriptional profiles of the chickens’ spleens and identify differentially expressed genes (DEGs). The RNA-seq findings were verified by quantitative reverse-transcription PCR (qRT-PCR). A total of 31,959 genes was identified in response to CAstV infection. Eventually, 45 DEGs (p-value < 0.05; log2 fold change > 1) were recognized in the spleen after CAstV infection (26 upregulated DEGs and 19 downregulated DEGs). qRT-PCR performed on four genes (IFIT5, OASL, RASD1, and DDX60) confirmed the RNA-seq results. The most differentially expressed genes encode putative IFN-induced CAstV restriction factors. Most DEGs were associated with the RIG-I-like signaling pathway or more generally with an innate antiviral response (upregulated: BLEC3, CMPK2, IFIT5, OASL, DDX60, and IFI6; downregulated: SPIK5, SELENOP, HSPA2, TMEM158, RASD1, and YWHAB). The study provides a global analysis of host transcriptional changes that occur during CAstV infection in vivo and proves that, in the spleen, CAstV infection in chickens predominantly affects the cell cycle and immune signaling.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3780-3780
Author(s):  
Hong Wu ◽  
He Dongmei ◽  
Ding Li ◽  
Yangqiu Li

Abstract Background The B-cell chronic lymphocytic leukemia (CLL)/lymphoma 11A gene (BCL11A) was associated with hematopoietic malignancies. However, the precise function of this transcription factor in B-cell malignancies still remain poorly characterized. Previous work from our laboratory has shown that BCL11A gene by small interfering RNA (siRNA) resulted in the growth inhibition and apoptosis of the B cell lymphoma cell line (i.e., SUDHL6 and EB1). The aim of this study was to further elucidate the molecular mechanism of this process by analyzing the gene expression profile in SUDHL6 cells after BCL11A knockdown. Methods FBCL11A siRNA was transfected into SUDHL6 cells to knock down BCL11A expression. Cells were collected, and RNA isolated for transcriptional profiling using the Affymetrix HG-U133 Plus 2.0 array. The global gene expression profile of the BCL11A siRNA-treated SUDHL6 cells was identified and analyzed. Twenty-one differentially expressed genes were further validated and analyzed from the BCL11A siRNA-treated SUDHL6 cells by real-time quantitative reverse transcript-polymerase chain reaction (qRT-PCR). Results FThere were 659 genes differentially expressed between the BCL11A siRNA- and negative control-transfected cells. These included 294 upregulated genes and 365 downregulated genes. The differentially expression genes are involved in various signaling pathways including metabolic pathways, focal adhesion, the MAPK signaling pathway, the cell cycle, the JAK-STAT signaling pathway, the TGF-beta signaling pathway, the WNT signaling pathway, apoptosis, and BCR signaling. qRT-PCR validation of the selected differentially expressed genes demonstrated agreement with the microarray analysis. There was a significant difference in the relative expression level of most of the selected genes differentially expressed between the BCL11A siRNA- and negative control siRNA-treated cells (P<0.05). After the transfection of BCL11A siRNA, among the apoptosis-related genes in the BCL-2 family, BCL2L11 was upregulated 7.24-fold, and BCL-2 was downregulated 3.23-fold. Conclusions Our results indicate that BCL11A is involved in gene networks with cancer related functions. BCL11A may play a role in gene expression events related to apoptosis. Disclosures: Li: This work was supported by Grants from National Natural Science Foundation of China (30871091 and 91129720), the Collaborated grant for HK-Macao-TW of Ministry of Science and Technology (2012DFH30060), the Guangdong Science & Technology Project (2012B0506: Research Funding.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rowan AlEjielat ◽  
Anas Khaleel ◽  
Amneh H. Tarkhan

Abstract Background Ankylosing spondylitis (AS) is a rare inflammatory disorder affecting the spinal joints. Although we know some of the genetic factors that are associated with the disease, the molecular basis of this illness has not yet been fully elucidated, and the genes involved in AS pathogenesis have not been entirely identified. The current study aimed at constructing a gene network that may serve as an AS gene signature and biomarker, both of which will help in disease diagnosis and the identification of therapeutic targets. Previously published gene expression profiles of 16 AS patients and 16 gender- and age-matched controls that were profiled on the Illumina HumanHT-12 V3.0 Expression BeadChip platform were mined. Patients were Portuguese, 21 to 64 years old, were diagnosed based on the modified New York criteria, and had Bath Ankylosing Spondylitis Disease Activity Index scores > 4 and Bath Ankylosing Spondylitis Functional Index scores > 4. All patients were receiving only NSAIDs and/or sulphasalazine. Functional enrichment and pathway analysis were performed to create an interaction network of differentially expressed genes. Results ITM2A, ICOS, VSIG10L, CD59, TRAC, and CTLA-4 were among the significantly differentially expressed genes in AS, but the most significantly downregulated genes were the HLA-DRB6, HLA-DRB5, HLA-DRB4, HLA-DRB3, HLA-DRB1, HLA-DQB1, ITM2A, and CTLA-4 genes. The genes in this study were mostly associated with the regulation of the immune system processes, parts of cell membrane, and signaling related to T cell receptor and antigen receptor, in addition to some overlaps related to the IL2 STAT signaling, as well as the androgen response. The most significantly over-represented pathways in the data set were associated with the “RUNX1 and FOXP3 which control the development of regulatory T lymphocytes (Tregs)” and the “GABA receptor activation” pathways. Conclusions Comprehensive gene analysis of differentially expressed genes in AS reveals a significant gene network that is involved in a multitude of important immune and inflammatory pathways. These pathways and networks might serve as biomarkers for AS and can potentially help in diagnosing the disease and identifying future targets for treatment.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu-Fu Gao ◽  
Dong-Hui Zhao ◽  
Jia-Qi Zhang ◽  
Jia-Shuo Chen ◽  
Jia-Lin Li ◽  
...  

Abstract Background Leaf color is an important ornamental trait of colored-leaf plants. The change of leaf color is closely related to the synthesis and accumulation of anthocyanins in leaves. Acer pseudosieboldianum is a colored-leaf tree native to Northeastern China, however, there was less knowledge in Acer about anthocyanins biosynthesis and many steps of the pathway remain unknown to date. Results Anthocyanins metabolite and transcript profiling were conducted using HPLC and ESI-MS/MS system and high-throughput RNA sequencing respectively. The results demonstrated that five anthocyanins were detected in this experiment. It is worth mentioning that Peonidin O-hexoside and Cyanidin 3, 5-O-diglucoside were abundant, especially Cyanidin 3, 5-O-diglucoside displayed significant differences in content change at two periods, meaning it may be play an important role for the final color. Transcriptome identification showed that a total of 67.47 Gb of clean data were obtained from our sequencing results. Functional annotation of unigenes, including comparison with COG and GO databases, yielded 35,316 unigene annotations. 16,521 differentially expressed genes were identified from a statistical analysis of differentially gene expression. The genes related to leaf color formation including PAL, ANS, DFR, F3H were selected. Also, we screened out the regulatory genes such as MYB, bHLH and WD40. Combined with the detection of metabolites, the gene pathways related to anthocyanin synthesis were analyzed. Conclusions Cyanidin 3, 5-O-diglucoside played an important role for the final color. The genes related to leaf color formation including PAL, ANS, DFR, F3H and regulatory genes such as MYB, bHLH and WD40 were selected. This study enriched the available transcriptome information for A. pseudosieboldianum and identified a series of differentially expressed genes related to leaf color, which provides valuable information for further study on the genetic mechanism of leaf color expression in A. pseudosieboldianum.


2021 ◽  
Vol 11 (5) ◽  
pp. 363
Author(s):  
Arafat Rahman Oany ◽  
Mamun Mia ◽  
Tahmina Pervin ◽  
Salem Ali Alyami ◽  
Mohammad Ali Moni

Nowadays, cervical cancer (CC) is treated as the leading cancer among women throughout the world. Despite effective vaccination and improved surgery and treatment, CC retains its fatality rate of about half of the infected population globally. The major screening biomarkers and therapeutic target identification have now become a global concern. In the present study, we have employed systems biology approaches to retrieve the potential biomarkers and pathways from transcriptomic profiling. Initially, we have identified 76 of each up-regulated and down-regulated gene from a total of 4643 differentially expressed genes. The up-regulatory genes mainly concentrate on immune-inflammatory responses, and the down-regulatory genes are on receptor binding and gamma-glutamyltransferase. The involved pathways associated with these genes were also assessed through pathway enrichment, and we mainly focused on different cancer pathways, immunoresponse, and cell cycle pathways. After the subsequent enrichment of these genes, we have identified 12 hub genes, which play a crucial role in CC and are verified by expression profile analysis. From our study, we have found that genes LILRB2 and CYBB play crucial roles in CC, as reported here for the first time. Furthermore, the survivability of the hub genes was also assessed, and among them, finally, CXCR4 has been identified as one of the most potential differentially expressed genes that might play a vital role in the survival of CC patients. Thus, CXCR4 could be used as a prognostic and/or diagnostic biomarker and a drug target for CC.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hui Li ◽  
Jing-An Chen ◽  
Qian-Zhi Ding ◽  
Guan-Yi Lu ◽  
Ning Wu ◽  
...  

Abstract Background Methamphetamine (METH) is one of the most widely abused illicit substances worldwide; unfortunately, its addiction mechanism remains unclear. Based on accumulating evidence, changes in gene expression and chromatin modifications might be related to the persistent effects of METH on the brain. In the present study, we took advantage of METH-induced behavioral sensitization as an animal model that reflects some aspects of drug addiction and examined the changes in gene expression and histone acetylation in the prefrontal cortex (PFC) of adult rats. Methods We conducted mRNA microarray and chromatin immunoprecipitation (ChIP) coupled to DNA microarray (ChIP-chip) analyses to screen and identify changes in transcript levels and histone acetylation patterns. Functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were performed to analyze the differentially expressed genes. We then further identified alterations in ANP32A (acidic leucine-rich nuclear phosphoprotein-32A) and POU3F2 (POU domain, class 3, transcription factor 2) using qPCR and ChIP-PCR assays. Results In the rat model of METH-induced behavioral sensitization, METH challenge caused 275 differentially expressed genes and a number of hyperacetylated genes (821 genes with H3 acetylation and 10 genes with H4 acetylation). Based on mRNA microarray and GO and KEGG enrichment analyses, 24 genes may be involved in METH-induced behavioral sensitization, and 7 genes were confirmed using qPCR. We further examined the alterations in the levels of the ANP32A and POU3F2 transcripts and histone acetylation at different periods of METH-induced behavioral sensitization. H4 hyperacetylation contributed to the increased levels of ANP32A mRNA and H3/H4 hyperacetylation contributed to the increased levels of POU3F2 mRNA induced by METH challenge-induced behavioral sensitization, but not by acute METH exposure. Conclusions The present results revealed alterations in transcription and histone acetylation in the rat PFC by METH exposure and provided evidence that modifications of histone acetylation contributed to the alterations in gene expression caused by METH-induced behavioral sensitization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Constantinos G. Broustas ◽  
Axel J. Duval ◽  
Sally A. Amundson

AbstractAs a radiation biodosimetry tool, gene expression profiling is being developed using mouse and human peripheral blood models. The impact of dose, dose-rate, and radiation quality has been studied with the goal of predicting radiological tissue injury. In this study, we determined the impact of aging on the gene expression profile of blood from mice exposed to radiation. Young (2 mo) and old (21 mo) male mice were irradiated with 4 Gy x-rays, total RNA was isolated from whole blood 24 h later, and subjected to whole genome microarray analysis. Pathway analysis of differentially expressed genes revealed young mice responded to x-ray exposure by significantly upregulating pathways involved in apoptosis and phagocytosis, a process that eliminates apoptotic cells and preserves tissue homeostasis. In contrast, the functional annotation of senescence was overrepresented among differentially expressed genes from irradiated old mice without enrichment of phagocytosis pathways. Pathways associated with hematologic malignancies were enriched in irradiated old mice compared with irradiated young mice. The fibroblast growth factor signaling pathway was underrepresented in older mice under basal conditions. Similarly, brain-related functions were underrepresented in unirradiated old mice. Thus, age-dependent gene expression differences should be considered when developing gene signatures for use in radiation biodosimetry.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kai Yu ◽  
Huan Yang ◽  
Qiao-li Lv ◽  
Li-chong Wang ◽  
Zi-long Tan ◽  
...  

Abstract Background Glioblastoma is the most common primary malignant brain tumor. Because of the limited understanding of its pathogenesis, the prognosis of glioblastoma remains poor. This study was conducted to explore potential competing endogenous RNA (ceRNA) network chains and biomarkers in glioblastoma by performing integrated bioinformatics analysis. Methods Transcriptome expression data from The Cancer Genome Atlas database and Gene Expression Omnibus were analyzed to identify differentially expressed genes between glioblastoma and normal tissues. Biological pathways potentially associated with the differentially expressed genes were explored by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, and a protein-protein interaction network was established using the STRING database and Cytoscape. Survival analysis using Gene Expression Profiling Interactive Analysis was based on the Kaplan–Meier curve method. A ceRNA network chain was established using the intersection method to align data from four databases (miRTarBase, miRcode, TargetScan, and lncBace2.0), and expression differences and correlations were verified by quantitative reverse-transcription polymerase chain reaction analysis and by determining the Pearson correlation coefficient. Additionally, an MTS assay and the wound-healing and transwell assays were performed to evaluate the effects of complement C1s (C1S) on the viability and migration and invasion abilities of glioblastoma cells, respectively. Results We detected 2842 differentially expressed (DE) mRNAs, 2577 DE long non-coding RNAs (lncRNAs), and 309 DE microRNAs (miRNAs) that were dysregulated in glioblastoma. The final ceRNA network consisted of six specific lncRNAs, four miRNAs, and four mRNAs. Among them, four DE mRNAs and one DE lncRNA were correlated with overall survival (p < 0.05). C1S was significantly correlated with overall survival (p= 0.015). In functional assays, knockdown of C1S inhibited the proliferation and invasion of glioblastoma cell lines. Conclusions We established four ceRNA networks that may influence the occurrence and development of glioblastoma. Among them, the MIR155HG/has-miR-129-5p/C1S axis is a potential marker and therapeutic target for glioblastoma. Knockdown of C1S inhibited the proliferation, migration, and invasion of glioblastoma cells. These findings clarify the role of the ceRNA regulatory network in glioblastoma and provide a foundation for further research.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1037.2-1038
Author(s):  
X. Sun ◽  
S. X. Zhang ◽  
S. Song ◽  
T. Kong ◽  
C. Zheng ◽  
...  

Background:Psoriasis is an immune-mediated, genetic disease manifesting in the skin or joints or both, and also has a strong genetic predisposition and autoimmune pathogenic traits1. The hallmark of psoriasis is sustained inflammation that leads to uncontrolled keratinocyte proliferation and dysfunctional differentiation. And it’s also a chronic relapsing disease, which often necessitates a long-term therapy2.Objectives:To investigate the molecular mechanisms of psoriasis and find the potential gene targets for diagnosis and treating psoriasis.Methods:Total 334 gene expression data of patients with psoriasis research (GSE13355 GSE14905 and GSE30999) were obtained from the Gene Expression Omnibus database. After data preprocessing and screening of differentially expressed genes (DEGs) by R software. Online toll Metascape3 was used to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. Interactions of proteins encoded by DEGs were discovered by Protein-protein interaction network (PPI) using STRING online software. Cytoscape software was utilized to visualize PPI and the degree of each DEGs was obtained by analyzing the topological structure of the PPI network.Results:A total of 611 DEGs were found to be differentially expressed in psoriasis. GO analysis revealed that up-regulated DEGs were mostly associated with defense and response to external stimulus while down-regulated DEGs were mostly associated with metabolism and synthesis of lipids. KEGG enrichment analysis suggested they were mainly enriched in IL-17 signaling, Toll-like receptor signaling and PPAR signaling pathways, Cytokine-cytokine receptor interaction and lipid metabolism. In addition, top 9 key genes (CXCL10, OASL, IFIT1, IFIT3, RSAD2, MX1, OAS1, IFI44 and OAS2) were identified through Cytoscape.Conclusion:DEGs of psoriasis may play an essential role in disease development and may be potential pathogeneses of psoriasis.References:[1]Boehncke WH, Schon MP. Psoriasis. Lancet 2015;386(9997):983-94. doi: 10.1016/S0140-6736(14)61909-7 [published Online First: 2015/05/31].[2]Zhang YJ, Sun YZ, Gao XH, et al. Integrated bioinformatic analysis of differentially expressed genes and signaling pathways in plaque psoriasis. Mol Med Rep 2019;20(1):225-35. doi: 10.3892/mmr.2019.10241 [published Online First: 2019/05/23].[3]Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10(1):1523. doi: 10.1038/s41467-019-09234-6 [published Online First: 2019/04/05].Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document