scholarly journals IFIH1 Contributes to M1 Macrophage Polarization in ARDS

2021 ◽  
Vol 11 ◽  
Author(s):  
Shi Zhang ◽  
Cuilin Chu ◽  
Zongsheng Wu ◽  
Feng Liu ◽  
Jianfeng Xie ◽  
...  

Accumulated evidence has demonstrated that the macrophage phenotypic switch from M0 to M1 is crucial in the initiation of the inflammatory process of acute respiratory distress syndrome (ARDS). Better insight into the molecular control of M1 macrophages in ARDS may identify potential therapeutic targets. In the current study, 36 candidate genes associated with the severity of ARDS and simultaneously involved in M1-polarized macrophages were first screened through a weighted network algorithm on all gene expression profiles from the 26 ARDS patients and empirical Bayes analysis on the gene expression profiles of macrophages. STAT1, IFIH1, GBP1, IFIT3, and IRF1 were subsequently identified as hub genes according to connectivity degree analysis and multiple external validations. Among these candidate genes, IFIH1 had the strongest connection with ARDS through the RobustRankAggreg algorithm. It was selected as a crucial gene for further investigation. For in vitro validation, the RAW264.7 cell line and BMDMs were transfected with shIFIH1 lentivirus and plasmid expression vectors of IFIH1. Cellular experimental studies further confirmed that IFIH1 was a novel regulator for promoting M1 macrophage polarization. Moreover, gene set enrichment analysis (GSEA) and in vitro validations indicated that IFIH1 regulated M1 polarization by activating IRF3. In addition, previous studies demonstrated that activation of IFIH1-IRF3 was stimulated by viral RNAs or RNA mimics. Surprisingly, the current study found that LPS could also induce IFIH1-IRF3 activation via a MyD88-dependent mechanism. We also found that only IFIH1 expression without LPS or RNA mimic stimulation could not affect IRF3 activation and M1 macrophage polarization. These findings were validated on two types of macrophages, RAW264.7 cells and BMDMs, which expanded the knowledge on the inflammatory roles of IFIH1 and IRF3, suggesting IFIH1 as a potential target for ARDS treatment.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Risa Okada ◽  
Shin-ichiro Fujita ◽  
Riku Suzuki ◽  
Takuto Hayashi ◽  
Hirona Tsubouchi ◽  
...  

AbstractSpaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5285 ◽  
Author(s):  
Mei Sze Tan ◽  
Siow-Wee Chang ◽  
Phaik Leng Cheah ◽  
Hwa Jen Yap

Although most of the cervical cancer cases are reported to be closely related to the Human Papillomavirus (HPV) infection, there is a need to study genes that stand up differentially in the final actualization of cervical cancers following HPV infection. In this study, we proposed an integrative machine learning approach to analyse multiple gene expression profiles in cervical cancer in order to identify a set of genetic markers that are associated with and may eventually aid in the diagnosis or prognosis of cervical cancers. The proposed integrative analysis is composed of three steps: namely, (i) gene expression analysis of individual dataset; (ii) meta-analysis of multiple datasets; and (iii) feature selection and machine learning analysis. As a result, 21 gene expressions were identified through the integrative machine learning analysis which including seven supervised and one unsupervised methods. A functional analysis with GSEA (Gene Set Enrichment Analysis) was performed on the selected 21-gene expression set and showed significant enrichment in a nine-potential gene expression signature, namely PEG3, SPON1, BTD and RPLP2 (upregulated genes) and PRDX3, COPB2, LSM3, SLC5A3 and AS1B (downregulated genes).


2005 ◽  
Vol 288 (6) ◽  
pp. C1211-C1221 ◽  
Author(s):  
Steven J. Pardo ◽  
Mamta J. Patel ◽  
Michelle C. Sykes ◽  
Manu O. Platt ◽  
Nolan L. Boyd ◽  
...  

Exposure to microgravity causes bone loss in humans, and the underlying mechanism is thought to be at least partially due to a decrease in bone formation by osteoblasts. In the present study, we examined the hypothesis that microgravity changes osteoblast gene expression profiles, resulting in bone loss. For this study, we developed an in vitro system that simulates microgravity using the Random Positioning Machine (RPM) to study the effects of microgravity on 2T3 preosteoblast cells grown in gas-permeable culture disks. Exposure of 2T3 cells to simulated microgravity using the RPM for up to 9 days significantly inhibited alkaline phosphatase activity, recapitulating a bone loss response that occurs in real microgravity conditions without altering cell proliferation and shape. Next, we performed DNA microarray analysis to determine the gene expression profile of 2T3 cells exposed to 3 days of simulated microgravity. Among 10,000 genes examined using the microarray, 88 were downregulated and 52 were upregulated significantly more than twofold using simulated microgravity compared with the static 1-g condition. We then verified the microarray data for some of the genes relevant in bone biology using real-time PCR assays and immunoblotting. We confirmed that microgravity downregulated levels of alkaline phosphatase, runt-related transcription factor 2, osteomodulin, and parathyroid hormone receptor 1 mRNA; upregulated cathepsin K mRNA; and did not significantly affect bone morphogenic protein 4 and cystatin C protein levels. The identification of gravisensitive genes provides useful insight that may lead to further hypotheses regarding their roles in not only microgravity-induced bone loss but also the general patient population with similar pathological conditions, such as osteoporosis.


2019 ◽  
Vol 20 (9) ◽  
pp. 2131 ◽  
Author(s):  
Michelle A. Glasgow ◽  
Peter Argenta ◽  
Juan E. Abrahante ◽  
Mihir Shetty ◽  
Shobhana Talukdar ◽  
...  

The majority of patients with high-grade serous ovarian cancer (HGSOC) initially respond to chemotherapy; however, most will develop chemotherapy resistance. Gene signatures may change with the development of chemotherapy resistance in this population, which is important as it may lead to tailored therapies. The objective of this study was to compare tumor gene expression profiles in patients before and after treatment with neoadjuvant chemotherapy (NACT). Tumor samples were collected from six patients diagnosed with HGSOC before and after administration of NACT. RNA extraction and whole transcriptome sequencing was performed. Differential gene expression, hierarchical clustering, gene set enrichment analysis, and pathway analysis were examined in all of the samples. Tumor samples clustered based on exposure to chemotherapy as opposed to patient source. Pre-NACT samples were enriched for multiple pathways involving cell cycle growth. Post-NACT samples were enriched for drug transport and peroxisome pathways. Molecular subtypes based on the pre-NACT sample (differentiated, mesenchymal, proliferative and immunoreactive) changed in four patients after administration of NACT. Multiple changes in tumor gene expression profiles after exposure to NACT were identified from this pilot study and warrant further attention as they may indicate early changes in the development of chemotherapy resistance.


2006 ◽  
Vol 18 (2) ◽  
pp. 239
Author(s):  
J. Piedrahita ◽  
S. Bischoff ◽  
J. Estrada ◽  
B. Freking ◽  
D. Nonneman ◽  
...  

Genomic imprinting arises from differential epigenetic markings including DNA methylation and histone modifications and results in one allele being expressed in a parent-of-origin specific manner. For further insight into the porcine epigenome, gene expression profiles of parthenogenetic (PRT; two maternally derived chromosome sets) and biparental embryos (BP; one maternal and one paternal set of chromosomes) were compared using microarrays. Comparison of the expression profiles of the two tissue types permits identification of both maternally and paternally imprinted genes and thus the degree of conservation of imprinted genes between swine and other mammalian species. Diploid porcine parthenogenetic fetuses were generated using follicular oocytes (BOMED, Madison, WI, USA). Oocytes with a visible polar body were activated using a single square pulse of direct current of 50 V/mm for 100 �s and diploidized by culture in 10 �g/mL cycloheximide for 6 h to limit extrusion of the second polar body. Following culture, BP embryos obtained by natural matings, and PRT embryos, were surgically transferred to oviducts on the first day of estrus. Fetuses recovered at 28-30 days of gestation were dissected to separate viscera including brain, liver, and placenta; the visceral tissues were then flash-frozen in liquid nitrogen. Porcine fibroblast tissue was obtained from the remaining carcass by mincing, trypsinization, and plating cells in �-MEM. Total RNA was extracted from frozen tissue or cell culture using RNA Aqueous kit (Ambion, Austin, TX, USA) according to the manufacturer's protocol. Gene expression differences between BP and PRT tissues were determined using the GeneChip� Porcine Genome Array (Affymetrix, Santa Clara, CA) containing 23 256 transcripts from Sus scrofa and representing 42 genes known to be imprinted in human and/or mice. Triplicate arrays were utilized for each tissue type, and for PRT versus BP combination. Significant differential gene expression was identified by a linear mixed model analysis using SAS 5.0 (SAS Institute, Cary, NC, USA). Storey's q-value method was used to correct for multiple testing at q d 0.05. The following genes were classified as imprinted on the basis of their expression profiles: In fibroblasts, ARHI, HTR2A, MEST, NDN, NNAT, PEG3, PLAGL1, PEG10, SGCE, SNRPN, and UBE3A; in liver, IGF2, PEG3, PLAGL1, PEG10, and SNRPN; in placenta, HTR2A, IGF2, MEST, NDN, NNAT, PEG3, PLAGL1, PEG10, and SNRPN; and in brain, none. Additionally, several genes not known to be imprinted in humans/mice were highly differentially expressed between the two tissue types. Overall, utilizing the PRT models and gene expression profiles, we have identified thirteen genes where imprinting is conserved between swine and humans/mice, and several candidate genes that represent potentially imprinted genes. Presently, our efforts are focused in the identification of single nucleotide polymorphisms (SNPs) to more carefully evaluate the behavior of these genes in normal and abnormal gestations and to test whether the candidate genes are indeed imprinted. This research was supported by USDA-CSREES grant 524383 to J. P. and B. F.


2008 ◽  
Vol 20 (1) ◽  
pp. 165
Author(s):  
X. S. Cui ◽  
X. Y. Li ◽  
T. Kim ◽  
N.-H. Kim

Trichostatin A (TSA) is an inhibitor of histone deacetylase and is able to alter gene expression patterns by interfering with the removal of acetyl groups from histones. The aim of this study was to determine the effect of TSA treatment on the development and gene expression patterns of mouse zygotes developing in vitro. The addition of 100 nm TSA to the culture medium did not affect the cleavage of mouse embryos (TSA treatment, 148/150 (99%) v. control, 107/107 (100%)); however, embryos that were treated with TSA arrested at the 2-cell stage (145/148, 98%). We estimated the number of nuclei in control and TSA-treated embryos by propidium iodide staining, taking into account the presence of any cells with two or more nuclei. At 62–63 h post-hCG stimulation, control zygotes had developed to the 4-cell stage and exhibited one nucleus in each blastomere, indicative of normal development. In contrast, we observed tetraploid nuclei in at least one blastomere in 20.8% (11/53) of the embryos that had been treated with TSA. At 28–29 h post-hCG stimulation (metaphase of the 1-cell stage), there was no difference in the mitotic index (as determined by analyzing the microtubule configuration) in the TSA group compared to the control group. At the 2-cell stage, however, we did not observe mitotic spindles and metaphase chromatin in embryos in the TSA treatment group compared to the controls. Interestingly, when embryos were cultured in TSA-free medium from 35 h post-hCG stimulation (S- or early G2-phase of the 2-cell stage) onward, almost all of them (47/50) developed to the blastocyst stage. In contrast, when embryos were cultured in TSA-free medium from 42 h post-hCG stimulation (middle G2-phase of the 2-cell stage) onward, they did not develop to the 4-cell stage. We used Illumina microarray technology to analyze the gene expression profiles in control and TSA-treated late 2-cell-stage embryos. Applied Biosystems Expression System software was used to extract assay signals and assay signal-to-noise ratio values from the microarray images. Our data showed that 897 genes were significantly (P < 0.05; 2-sample t-test) up- or down-regulated by TSA treatment compared to controls. Analysis using the PANTHER classification system (https://panther.appliedbiosystems.com) revealed that the 575 genes that were differentially expressed in the TSA group compared to the control were classified as being associated with putative biological processes or molecular function. Overall, in terms of putative biological processes, more nucleoside, nucleotide, and nucleic acid metabolism, protein metabolism and modification, signal transduction, developmental process, and cell cycle genes were differentially expressed between the TSA and control groups. In terms of putative molecular function, more nucleic acid-binding transcription factor and transferase genes were differentially expressed between the groups. The results collectively suggest that inhibition of histone acetylation in mouse embryos affects gene expression profiles at the time of zygotic genome activation, and this subsequently affects further development.


2007 ◽  
Vol 32 (1) ◽  
pp. 45-57 ◽  
Author(s):  
Shantel Weinsheimer ◽  
Guy M. Lenk ◽  
Monique van der Voet ◽  
Susan Land ◽  
Antti Ronkainen ◽  
...  

Intracranial aneurysm (IA) is a complex genetic disease for which, to date, 10 loci have been identified by linkage. Identification of the risk-conferring genes in the loci has proven difficult, since the regions often contain several hundreds of genes. An approach to prioritize positional candidate genes for further studies is to use gene expression data from diseased and nondiseased tissue. Genes that are not expressed, either in diseased or nondiseased tissue, are ranked as unlikely to contribute to the disease. We demonstrate an approach for integrating expression and genetic mapping data to identify likely pathways involved in the pathogenesis of a disease. We used expression profiles for IAs and nonaneurysmal intracranial arteries (IVs) together with the 10 reported linkage intervals for IA. Expressed genes were analyzed for membership in Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathways. The 10 IA loci harbor 1,858 candidate genes, of which 1,561 (84%) were represented on the microarrays. We identified 810 positional candidate genes for IA that were expressed in IVs or IAs. Pathway information was available for 294 of these genes and involved 32 KEGG biological function pathways represented on at least 2 loci. A likelihood-based score was calculated to rank pathways for involvement in the pathogenesis of IA. Adherens junction, MAPK, and Notch signaling pathways ranked high. Integration of gene expression profiles with genetic mapping data for IA provides an approach to identify candidate genes that are more likely to function in the pathology of IA.


2006 ◽  
Vol 25 (5) ◽  
pp. 379-395 ◽  
Author(s):  
Gisela Werle-Schneider ◽  
Andreas Wölfelschneider ◽  
Marie Charlotte von Brevern ◽  
Julia Scheel ◽  
Thorsten Storck ◽  
...  

Transcription profiling is used as an in vivo method for predicting the mode-of-action class of nongenotoxic carcinogens. To set up a reliable in vitro short-term test system DNA microarray technology was combined with rat liver slices. Seven compounds known to act as tumor promoters were selected, which included the enzyme inducers phenobarbital, α-hexachlorocyclohexane, and cyproterone acetate; the peroxisome proliferators WY-14,643, dehydroepiandrosterone, and ciprofibrate; and the hormone 17 α-ethinylestradiol. Rat liver slices were exposed to various concentrations of the compounds for 24 h. Toxicology-focused TOXaminer™ DNA microarrays containing approximately 1500 genes were used for generating gene expression profiles for each of the test compound. Hierarchical cluster analysis revealed that (i) gene expression profiles generated in rat liver slices in vitro were specific allowing classification of compounds with similar mode of action and (ii) expression profiles of rat liver slices exposed in vitro correlate with those induced after in vivo treatment (reported previously). Enzyme inducers and peroxisome proliferators formed two separate clusters, confirming that they act through different mechanisms. Expression profiles of the hormone 17 α-ethinylestradiol were not similar to any of the other compounds. In conclusion, gene expression profiles induced by compounds that act via similar mechanisms showed common effects on transcription upon treatment in vivo and in rat liver slices in vitro.


Sign in / Sign up

Export Citation Format

Share Document