scholarly journals Advances in Modeling the Immune Microenvironment of Colorectal Cancer

2021 ◽  
Vol 11 ◽  
Author(s):  
Paul Sukwoo Yoon ◽  
Nuala Del Piccolo ◽  
Venktesh S. Shirure ◽  
Yushuan Peng ◽  
Amanda Kirane ◽  
...  

Colorectal cancer (CRC) is the third most common cancer and second leading cause of cancer-related death in the US. CRC frequently metastasizes to the liver and these patients have a particularly poor prognosis. The infiltration of immune cells into CRC tumors and liver metastases accurately predicts disease progression and patient survival. Despite the evident influence of immune cells in the CRC tumor microenvironment (TME), efforts to identify immunotherapies for CRC patients have been limited. Here, we argue that preclinical model systems that recapitulate key features of the tumor microenvironment—including tumor, stromal, and immune cells; the extracellular matrix; and the vasculature—are crucial for studies of immunity in the CRC TME and the utility of immunotherapies for CRC patients. We briefly review the discoveries, advantages, and disadvantages of current in vitro and in vivo model systems, including 2D cell culture models, 3D culture systems, murine models, and organ-on-a-chip technologies.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii223-ii223
Author(s):  
Nicholas Bayley ◽  
Christopher Tse ◽  
Henan Zhu ◽  
Weihong Yan ◽  
Laura Gosa ◽  
...  

Abstract The derivation of model systems from patient tumors is a requisite for reproducible and high throughput translational cancer research. However, not all tumors can form a model and those that do often fail to capture the molecular diversity specific to their cancer. The potential tumor-intrinsic underpinnings remain largely unknown. In gliomas, the brain tumor microenvironment (TME) is increasingly acknowledged as a regulator of tumor proliferation, invasion, and therapy response. The dissimilar environment of in vitro and heterotopic xenograft models could potentially play a role in the limited fidelity of these model systems. Here we established a culture-free workflow and biobank of 144 glioma direct-from-patient orthotopic xenografts (DPDOX) and 51 parallel gliomasphere cultures (GS). Our direct-from-patient workflow enabled the exclusive in vivo establishment of several gliomas – hereafter termed TME-dependent tumors – including low and high grade mtIDH gliomas and histone H3.3 G34 glioblastomas notoriously difficult to culture in vitro. Through molecular profiling of over 75 patient tumors and their matched derivative models, we find that DPDOX tumors preserve a gene expression signature of neural and glial interactions not found in GS and enriched in brain TME-dependent patient tumors. While these patient tumors span a diversity of clinical diagnoses, network-based inferred transcription factor activity suggests that they converge on shared master regulators of self-renewal driving proneural and OPC/NPC-like cellular state enrichment. Integrating multi-omic profiling from TCGA and other publicly available datasets reveals that this expression signature corresponds to a shared DNA methylation signature across disparate epigenetic subgroups. These findings suggest a brain TME dependence in patient tumors across multiple molecular and clinical classifications of glioma which leads to a lack of representation in model systems failing to recapitulate tumor-promoting components of the TME. Further this work provides a resource to guide translational investigations accounting for influences of the model environment.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 914
Author(s):  
Melanie V. Brady ◽  
Flora M. Vaccarino

The complexities of human neurodevelopment have historically been challenging to decipher but continue to be of great interest in the contexts of healthy neurobiology and disease. The classic animal models and monolayer in vitro systems have limited the types of questions scientists can strive to answer in addition to the technical ability to answer them. However, the tridimensional human stem cell-derived organoid system provides the unique opportunity to model human development and mimic the diverse cellular composition of human organs. This strategy is adaptable and malleable, and these neural organoids possess the morphogenic sensitivity to be patterned in various ways to generate the different regions of the human brain. Furthermore, recapitulating human development provides a platform for disease modeling. One master regulator of human neurodevelopment in many regions of the human brain is sonic hedgehog (SHH), whose expression gradient and pathway activation are responsible for conferring ventral identity and shaping cellular phenotypes throughout the neural axis. This review first discusses the benefits, challenges, and limitations of using organoids for studying human neurodevelopment and disease, comparing advantages and disadvantages with other in vivo and in vitro model systems. Next, we explore the range of control that SHH exhibits on human neurodevelopment, and the application of SHH to various stem cell methodologies, including organoids, to expand our understanding of human development and disease. We outline how this strategy will eventually bring us much closer to uncovering the intricacies of human neurodevelopment and biology.


2013 ◽  
Vol 6 ◽  
pp. LPI.S10871 ◽  
Author(s):  
Paul Toren ◽  
Benjamin C. Mora ◽  
Vasundara Venkateswaran

Obesity has been linked to more aggressive characteristics of several cancers, including breast and prostate cancer. Adipose tissue appears to contribute to paracrine interactions in the tumor microenvironment. In particular, cancer-associated adipocytes interact reciprocally with cancer cells and influence cancer progression. Adipokines secreted from adipocytes likely form a key component of the paracrine signaling in the tumor microenvironment. In vitro coculture models allow for the assessment of specific adipokines in this interaction. Furthermore, micronutrients and macronutrients present in the diet may alter the secretion of adipokines from adipocytes. The effect of dietary fat and specific fatty acids on cancer progression in several in vivo model systems and cancer types is reviewed. The more common approaches of caloric restriction or diet-induced obesity in animal models establish that such dietary changes modulate tumor biology. This review seeks to explore available evidence regarding how diet may modulate tumor characteristics through changes in the role of adipocytes in the tumor microenvironment.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1288 ◽  
Author(s):  
Charlotte Dahlem ◽  
Wei Xiong Siow ◽  
Maria Lopatniuk ◽  
William K. F. Tse ◽  
Sonja M. Kessler ◽  
...  

Natural products represent powerful tools searching for novel anticancer drugs. Thioholgamide A (thioA) is a ribosomally synthesized and post-translationally modified peptide, which has been identified as a product of Streptomyces sp. MUSC 136T. In this study, we provide a comprehensive biological profile of thioA, elucidating its effects on different hallmarks of cancer in tumor cells as well as in macrophages as crucial players of the tumor microenvironment. In 2D and 3D in vitro cell culture models thioA showed potent anti-proliferative activities in cancer cells at nanomolar concentrations. Anti-proliferative actions were confirmed in vivo in zebrafish embryos. Cytotoxicity was only induced at several-fold higher concentrations, as assessed by live-cell microscopy and biochemical analyses. ThioA exhibited a potent modulation of cell metabolism by inhibiting oxidative phosphorylation, as determined in a live-cell metabolic assay platform. The metabolic modulation caused a repolarization of in vitro differentiated and polarized tumor-promoting human monocyte-derived macrophages: ThioA-treated macrophages showed an altered morphology and a modulated expression of genes and surface markers. Taken together, the metabolic regulator thioA revealed low activities in non-tumorigenic cells and an interesting anti-cancer profile by orchestrating different hallmarks of cancer, both in tumor cells as well as in macrophages as part of the tumor microenvironment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Justyna Sośniak ◽  
Jolanta Opiela

Abstract Most in vitro cell-based research is based on two-dimensional (2D) systems where growth and development take place on a flat surface, which does not reflect the natural environment of the cells. The imperfection and limitations of culture in 2D systems eventually led to the creation of three-dimensional (3D) culture models that more closely reproduce the actual conditions of physiological cell growth. Since the inception of 3D culture technology, many culture models have been developed, such as technologies of multicellular spheroids, organoids, and organs on chips in the technology of scaffolding, hydrogels, bio-printing and liquid media. In this review we will focus on the advantages and disadvantages of the 2D vs. 3D cell cultures technologies. We will also try to sum up available 3D cultures systems and materials for building 3D scaffolds.


2021 ◽  
Author(s):  
Ke Xu ◽  
Kai Fang ◽  
Yueping Zhan ◽  
Yuqian Wang ◽  
Chengqi Wu ◽  
...  

Abstract Background Anti-angiogenesis therapy has increasingly become an important strategy for the treatment of colorectal cancer. Recent studies have shown that tumor microenvironment (TME) promotes tumour angiogenesis. Bufalin is an active compound whose anti-tumor efficacy has been proven by previous studies. However, there are very few studies on the anti-angiogenic effects of bufalin. Methods Herein, human umbilical vein endothelial cells (HUVEC) tube formation, migration and adhesion test were used to assess angiogenesis in vitro. Western blot and quantitative PCR were used to detect relevant protein levels and the expressions of mRNAs. Subcutaneous xenograft tumor model and hepatic metastasis model in mice were established to investigate the influence of bufalin on angiogenesis-mediated by TME in vivo. Results We found that the angiogenesis mediated by tumor microenvironment cells was significantly inhibited in the present of bufalin. The results demonstrated that the pro-angiogenic gene in HUVEC such as VEGF, PDGFA, E-selectin and P-selectin were downregulated by bufalin, and the downregulation was regulated by inhibiting the STAT3 pathway. Overexpression STAT3 could reverse the inhibitory effect of bufalin on angiogenesis. What is more, few reduction of angiogenesis when bufalin directly acted on tumor microenvironment cells. Conclusion Our findings demonstrate that bufalin suppresses tumour microenvironment-mediated angiogenesis by inhibiting the STAT3 signaling pathway of vascular endothelial cells, which reveals that bufalin may be used as a new anti-angiogenic adjuvant therapy medicine in the treatment of colorectal cancer.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2506
Author(s):  
Advika Kamatar ◽  
Gokhan Gunay ◽  
Handan Acar

The lack of in vitro models that represent the native tumor microenvironment is a significant challenge for cancer research. Two-dimensional (2D) monolayer culture has long been the standard for in vitro cell-based studies. However, differences between 2D culture and the in vivo environment have led to poor translation of cancer research from in vitro to in vivo models, slowing the progress of the field. Recent advances in three-dimensional (3D) culture have improved the ability of in vitro culture to replicate in vivo conditions. Although 3D cultures still cannot achieve the complexity of the in vivo environment, they can still better replicate the cell–cell and cell–matrix interactions of solid tumors. Multicellular tumor spheroids (MCTS) are three-dimensional (3D) clusters of cells with tumor-like features such as oxygen gradients and drug resistance, and represent an important translational tool for cancer research. Accordingly, natural and synthetic polymers, including collagen, hyaluronic acid, Matrigel®, polyethylene glycol (PEG), alginate and chitosan, have been used to form and study MCTS for improved clinical translatability. This review evaluates the current state of biomaterial-based MCTS formation, including advantages and disadvantages of the different biomaterials and their recent applications to the field of cancer research, with a focus on the past five years.


Author(s):  
Maria M. Haykal ◽  
Clara Nahmias ◽  
Christine Varon ◽  
Océane C. B. Martin

Cancer is a complex disease and it is now clear that not only epithelial tumor cells play a role in carcinogenesis. The tumor microenvironment is composed of non-stromal cells, including endothelial cells, adipocytes, immune and nerve cells, and a stromal compartment composed of extracellular matrix, cancer-associated fibroblasts and mesenchymal cells. Tumorigenesis is a dynamic process with constant interactions occurring between the tumor cells and their surroundings. Even though all connections have not yet been discovered, it is now known that crosstalk between actors of the microenvironment drives cancer progression. Taking into account this complexity, it is important to develop relevant models to study carcinogenesis. Conventional 2D culture models fail to represent the entire tumor microenvironment properly and the use of animal models should be decreased with respect to the 3Rs rule. To this aim, in vitro organotypic models have been significantly developed these past few years. These models have different levels of complexity and allow the study of tumor cells alone or in interaction with the microenvironment actors during the multiple stages of carcinogenesis. This review depicts recent insights into organotypic modeling of the tumor and its microenvironment all throughout cancer progression. It offers an overview of the crosstalk between epithelial cancer cells and their microenvironment during the different phases of carcinogenesis, from the early cell autonomous events to the late metastatic stages. The advantages of 3D over classical 2D or in vivo models are presented as well as the most promising organotypic models. A particular focus is made on organotypic models used for studying cancer progression, from the less complex spheroids to the more sophisticated body-on-a-chip. Last but not least, we address the potential benefits of these models in personalized medicine which is undoubtedly a domain paving the path to new hopes in terms of cancer care and cure.


2020 ◽  
Author(s):  
Shinji Iizuka ◽  
Ronald P. Leon ◽  
Kyle P. Gribbin ◽  
Ying Zhang ◽  
Jose Navarro ◽  
...  

ABSTRACTThe scaffold protein Tks5α is required for invadopodia-mediated cancer invasion both in vitro and in vivo. We have previously also revealed a role for Tks5 in tumor cell growth using three-dimensional (3D) culture model systems and mouse transplantation experiments. Here we use both 3D and high-density fibrillar collagen (HDFC) culture to demonstrate that native type I collagen, but not a form lacking the telopeptides, stimulated Tks5-dependent growth, which was dependent on the DDR collagen receptors. We used microenvironmental microarray (MEMA) technology to determine that laminin, collagen I, fibronectin and tropoelastin also stimulated invadopodia formation. A Tks5α-specific monoclonal antibody revealed its expression both on microtubules and at invadopodia. High- and super-resolution microscopy of cells in and on collagen was then used to place Tks5α at the base of invadopodia, separated from much of the actin and cortactin, but coincident with both matrix metalloprotease and cathepsin proteolytic activity. Inhibition of the Src family kinases, cathepsins or metalloproteases all reduced invadopodia length but each had distinct effects on Tks5α localization. These studies highlight the crosstalk between invadopodia and extracellular matrix components, and reveal the invadopodium to be a spatially complex structure.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1370-1370
Author(s):  
Charlotte V. Cox ◽  
Roger S. Evely ◽  
Allison Blair

Abstract T cell acute lymphoblastic leukaemias (T-ALL) are highly aggressive malignancies representing 10–15% of paediatric and 25% adult ALLs. T-ALL was considered to arise as a consequence of clonal expansion of early thymocytes. However, progress towards increasing our understanding of the biology of this disease has been hampered by lack of appropriate culture systems to study primary cells and use of murine model systems that often do not accurately reflect human disease. Traditional xenograft models of leukaemia have involved implantation of malignant cells or immortalised leukaemic cell lines with either intraperitoneal or subcutaneous localisation of leukaemia. These models do not mimic the normal pathophysiology of the disease and may therefore provide misleading data. Since evaluation of new agents in paediatric malignancies is limited by the small number of children eligible for clinical trails, there is a need for a predictive preclinical model of paediatric ALL. We have previously used a long-term suspension culture system to evaluate proliferation of T-ALL cells in vitro and demonstrated these cells had a CD34+/CD4−, CD7− phenotype. T-ALL cells with this phenotype were also capable of engrafting NOD/SCID mice, suggesting the disease may arise in a more primitive cell. In this study we have attempted to further characterise T-ALL cells with long-term proliferative ability in vivo and to investigate the kinetics of engraftment. Unsorted cells and cells sorted for the expression of CD133 and CD7 from 5 T-ALL patients were inoculated into sublethally irradiated NOD/SCID mice. Peripheral blood samples were taken at weekly intervals from the lateral tail vein from two weeks post inoculation onwards. BM samples were analysed from 4 weeks post inoculation and all animals were sacrificed no later than 10 weeks post inoculation. Human CD45+ cells were first detected at day 17-post inoculation (1.54–3.8% CD45+). By week 4, this had increased to 4.4–21% CD45+ in PB samples, while levels in BM aspirates were significantly higher at this stage (24–47% CD45+). This pattern of tissue dissemination closely mimics that observed in the patients. The levels of CD45+ cells continued to rise with time and had exceeded 85% in the BM of animals injected with cells from 3 patients by week 7-post inoculation. FISH and flow cytometric analyses showed the engrafted cells had a similar karyotype and phenotype to the patient at diagnosis and there was no evidence of myeloid cell engraftment. Cells harvested from these animals have been used in secondary, tertiary and quaternary transplants with no loss of NOD/SCID repopulating potential and similar engraftment kinetics. Quinary transplants are currently underway. In the sorted cell populations, only the CD133+/CD7− subfraction was capable of engrafting, 0.5–54% CD45+, with as few as 1.4x103–5x103 cells. There was no engraftment with the other subfractions despite injecting 10 to 1000-fold more cells. These engrafted cells expressed high levels of CD34, CD2, CD4 and CD7 and very low levels of CD133. This phenotype was similar to that of the patients at diagnosis, implying they had differentiated in vivo. These data add to the evidence that T-ALL may arise in a cell with a more primitive phenotype, rather than committed thymocytes. These cells may be the most relevant targets for emerging therapeutic strategies and we describe a robust, reproducible in vivo leukaemia model which could be used to investigate the efficacy of novel agents for the treatment of paediatric T-ALL.


Sign in / Sign up

Export Citation Format

Share Document