scholarly journals Intestinal Dysbiosis and Autoimmune Pancreatitis

2021 ◽  
Vol 12 ◽  
Author(s):  
Tomoe Yoshikawa ◽  
Tomohiro Watanabe ◽  
Ken Kamata ◽  
Akane Hara ◽  
Kosuke Minaga ◽  
...  

Autoimmune pancreatitis (AIP) is a chronic fibro-inflammatory disorder of the pancreas. Recent clinicopathological analysis revealed that most cases of AIP are pancreatic manifestations of systemic IgG4-related disease (IgG4-RD), a newly established disease characterized by enhanced IgG4 antibody responses and the involvement of multiple organs. Although the immuno-pathogenesis of AIP and IgG4-RD has been poorly defined, we recently showed that activation of plasmacytoid dendritic cells (pDCs) with the ability to produce large amounts of IFN-α and IL-33 mediates chronic fibro-inflammatory responses in experimental and human AIP. Moreover, M2 macrophages producing a large amount of IL-33 play pathogenic roles in the development of human IgG4-RD. Interestingly, recent studies including ours provide evidence that compositional alterations of gut microbiota are associated with the development of human AIP and IgG4-RD. In addition, intestinal dysbiosis plays pathological roles in the development of chronic pancreatic inflammation as dysbiosis mediates the activation of pDCs producing IFN-α and IL-33, thereby causing experimental AIP. In this Mini Review, we focus on compositional alterations of gut microbiota in AIP and IgG4-RD to clarify the mechanisms by which intestinal dysbiosis contributes to the development of these disorders.

Author(s):  
Felipe Papa Pellizoni ◽  
Aline Zazeri Leite ◽  
Nathália de Campos Rodrigues ◽  
Marcelo Jordão Ubaiz ◽  
Marina Ignácio Gonzaga ◽  
...  

Dysbiosis, associated with barrier disruption and altered gut–brain communications, has been associated with multiple sclerosis (MS). In this study, we evaluated the gut microbiota in relapsing–remitting patients (RRMS) receiving disease-modifying therapies (DMTs) and correlated these data with diet, cytokines levels, and zonulin concentrations. Stool samples were used for 16S sequencing and real-time PCR. Serum was used for cytokine determination by flow cytometry, and zonulin quantification by ELISA. Pearson’s chi-square, Mann–Whitney, and Spearman’s correlation were used for statistical analyses. We detected differences in dietary habits, as well as in the gut microbiota in RRMS patients, with predominance of Akkermansia muciniphila and Bacteroides vulgatus and decreased Bifidobacterium. Interleukin-6 concentrations were decreased in treated patients, and we detected an increased intestinal permeability in RRMS patients when compared with controls. We conclude that diet plays an important role in the composition of the gut microbiota, and intestinal dysbiosis, detected in RRMS patients could be involved in increased intestinal permeability and affect the clinical response to DTMs. The future goal is to predict therapeutic responses based on individual microbiome analyses (personalized medicine) and propose dietary interventions and the use of probiotics or other microbiota modulators as adjuvant therapy to enhance the therapeutic efficacy of DMTs.


2021 ◽  
Vol 10 (6) ◽  
pp. 1329
Author(s):  
Johanna Backhus ◽  
Christian Neumann ◽  
Lukas Perkhofer ◽  
Lucas A Schulte ◽  
Benjamin Mayer ◽  
...  

Objectives: IgG4-related disease (IgG4-RD) is a chronic fibro-inflammatory disorder affecting virtually any organ. Type 1 autoimmune (type 1 AIP) is its pancreatic manifestation. To date, steroids are considered the first-line pancreatitis treatment. The CD20-binding antibody rituximab (RTX) appears a promising steroid-sparing therapy, although long-term data are lacking. We aimed to bridge this gap with a cohort of IgG4-RD patients treated with RTX and to assess the potential value of the Responder Index (RI) as a discriminatory score for disease activity. Methods: We retrospectively evaluated 46 patients from a tertiary referral centre who were diagnosed with IgG4-RD and/or type 1 AIP according to the International Consensus Diagnostic Criteria or Unifying-AIP criteria between June 2006 and August 2019. Results: Patients resembled previous cohorts in terms of characteristics, diagnosis, and therapeutic response. Thirteen of the 46 patients with IgG4-RD/type 1 AIP were treated with RTX pulse therapy due to relapse, adverse reactions to steroids, or high-risk constellations predicting a severe course of disease with multi-organ involvement. Median follow-up after diagnosis was 52 months for all subjects, and 71 months in IgG4-RD patients treated with RTX. While patients in the RTX group showed no significant response to an initial steroid pulse, clinical activity as measured by the RI significantly decreased in the short-term after RTX induction. Within 16 months, 61% of patients relapsed in the RTX group but responded well to re-induction. Clinical and laboratory parameters improved equally in response to RTX. Conclusion: RTX therapy in patients with IgG4-RD is an effective and safe treatment to induce treatment response and possible long-term remission. Repeated RTX administration after 6–9 months may be of value in reducing the risk of relapse. The RI appears to be a reasonable index to assess disease activity and to identify patients with IgG4-related disease who may benefit from B-cell-depleting therapy.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Umair Shabbir ◽  
Muhammad Sajid Arshad ◽  
Aysha Sameen ◽  
Deog-Hwan Oh

The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota–gut–brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer’s disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood–brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Velma T. E. Aho ◽  
Madelyn C. Houser ◽  
Pedro A. B. Pereira ◽  
Jianjun Chang ◽  
Knut Rudi ◽  
...  

Abstract Background Previous studies have reported that gut microbiota, permeability, short-chain fatty acids (SCFAs), and inflammation are altered in Parkinson’s disease (PD), but how these factors are linked and how they contribute to disease processes and symptoms remains uncertain. This study sought to compare and identify associations among these factors in PD patients and controls to elucidate their interrelations and links to clinical manifestations of PD. Methods Stool and plasma samples and clinical data were collected from 55 PD patients and 56 controls. Levels of stool SCFAs and stool and plasma inflammatory and permeability markers were compared between patients and controls and related to one another and to the gut microbiota. Results Calprotectin was increased and SCFAs decreased in stool in PD in a sex-dependent manner. Inflammatory markers in plasma and stool were neither intercorrelated nor strongly associated with SCFA levels. Age at PD onset was positively correlated with SCFAs and negatively correlated with CXCL8 and IL-1β in stool. Fecal zonulin correlated positively with fecal NGAL and negatively with PD motor and non-motor symptoms. Microbiota diversity and composition were linked to levels of SCFAs, inflammatory factors, and zonulin in stool. Certain relationships differed between patients and controls and by sex. Conclusions Intestinal inflammatory responses and reductions in fecal SCFAs occur in PD, are related to the microbiota and to disease onset, and are not reflected in plasma inflammatory profiles. Some of these relationships are distinct in PD and are sex-dependent. This study revealed potential alterations in microbiota-host interactions and links between earlier PD onset and intestinal inflammatory responses and reduced SCFA levels, highlighting candidate molecules and pathways which may contribute to PD pathogenesis and clinical presentation and which warrant further investigation.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 699
Author(s):  
Cielo García-Montero ◽  
Oscar Fraile-Martínez ◽  
Ana M. Gómez-Lahoz ◽  
Leonel Pekarek ◽  
Alejandro J. Castellanos ◽  
...  

The most prevalent diseases of our time, non-communicable diseases (NCDs) (including obesity, type 2 diabetes, cardiovascular diseases and some types of cancer) are rising worldwide. All of them share the condition of an “inflammatory disorder”, with impaired immune functions frequently caused or accompanied by alterations in gut microbiota. These multifactorial maladies also have in common malnutrition related to physiopathology. In this context, diet is the greatest modulator of immune system–microbiota crosstalk, and much interest, and new challenges, are arising in the area of precision nutrition as a way towards treatment and prevention. It is a fact that the westernized diet (WD) is partly responsible for the increased prevalence of NCDs, negatively affecting both gut microbiota and the immune system. Conversely, other nutritional approaches, such as Mediterranean diet (MD), positively influence immune system and gut microbiota, and is proposed not only as a potential tool in the clinical management of different disease conditions, but also for prevention and health promotion globally. Thus, the purpose of this review is to determine the regulatory role of nutritional components of WD and MD in the gut microbiota and immune system interplay, in order to understand, and create awareness of, the influence of diet over both key components.


2011 ◽  
Vol 46 (3) ◽  
pp. 277-288 ◽  
Author(s):  
Kazuichi Okazaki ◽  
Kazushige Uchida ◽  
Masanori Koyabu ◽  
Hideaki Miyoshi ◽  
Makoto Takaoka

2021 ◽  
Vol 22 ◽  
Author(s):  
Poornima Gopi ◽  
TR Anju ◽  
Vinod Soman Pillai ◽  
Mohanan Veettil

: Novel coronavirus, SARS-CoV-2 is advancing at a staggering pace to devastate the health care system and foster the concerns over public health. In contrast to the past outbreaks, coronaviruses aren’t clinging themselves as a strict respiratory virus. Rather, becoming a multifaceted virus, it affects multiple organs by interrupting a number of metabolic pathways leading to significant rates of morbidity and mortality. Following infection they rigorously reprogram multiple metabolic pathways of glucose, lipid, protein, nucleic acid and their metabolites to extract adequate energy and carbon skeletons required for their existence and further molecular constructions inside a host cell. Although the mechanism of these alterations are yet to be known, the impact of these reprogramming is reflected in the hyper inflammatory responses, so called cytokine storm and the hindrance of host immune defence system. The metabolic reprogramming during SARS-CoV-2 infection needs to be considered while devising therapeutic strategies to combat the disease and its further complication. The inhibitors of cholesterol and phospholipids synthesis and cell membrane lipid raft of the host cell can, to a great extent, control the viral load and further infection. Depletion of energy source by inhibiting the activation of glycolytic and hexoseamine biosynthetic pathway can also augment the antiviral therapy. The cross talk between these pathways also necessitates the inhibition of amino acid catabolism and tryptophan metabolism. A combinatorial strategy which can address the cross talks between the metabolic pathways might be more effective than a single approach and the infection stage and timing of therapy will also influence the effectiveness of the antiviral approach. We herein focus on the different metabolic alterations during the course of virus infection that help to exploit the cellular machinery and devise a therapeutic strategy which promotes resistance to viral infection and can augment body’s antivirulence mechanisms. This review may cast the light into the possibilities of targeting altered metabolic pathways to defend virus infection in a new perspective.


Diseases ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 109 ◽  
Author(s):  
Dervla Kelly ◽  
Liying Yang ◽  
Zhiheng Pei

The gut microbiota has emerged as an environmental contributor to colorectal cancer (CRC) in both animal models and human studies. It is now generally accepted that bacteria are ubiquitous colonizers of all exposed human body surfaces, including the entire alimentary tract (5). Recently, the concept that a normal bacterial microbiota is essential for the development of inflammation-induced carcinoma has emerged from studies of well-known colonic bacterial microbiota. This review explores the evidence for a role of fusobacteria, an anaerobic gram-negative bacterium that has repeatedly been detected at colorectal tumor sites in higher abundance than surrounding histologically normal tissue. Mechanistic studies provide insight on the interplay between fusobacteria, other gut microbiota, barrier functions, and host responses. Studies have shown that fusobacteria activate host inflammatory responses designed to protect against pathogens that promote tumor growth. We discuss how future research identifying the pathophysiology underlying fusobacteria colon colonization during colorectal cancer may lead to new therapeutic targets for cancer. Furthermore, disease-protective strategies suppressing tumor development by targeting the local tumor environment via bacteria represent another exciting avenue for researchers and are highlighted in this review.


Sign in / Sign up

Export Citation Format

Share Document