scholarly journals Gut Microbiota, Fusobacteria, and Colorectal Cancer

Diseases ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 109 ◽  
Author(s):  
Dervla Kelly ◽  
Liying Yang ◽  
Zhiheng Pei

The gut microbiota has emerged as an environmental contributor to colorectal cancer (CRC) in both animal models and human studies. It is now generally accepted that bacteria are ubiquitous colonizers of all exposed human body surfaces, including the entire alimentary tract (5). Recently, the concept that a normal bacterial microbiota is essential for the development of inflammation-induced carcinoma has emerged from studies of well-known colonic bacterial microbiota. This review explores the evidence for a role of fusobacteria, an anaerobic gram-negative bacterium that has repeatedly been detected at colorectal tumor sites in higher abundance than surrounding histologically normal tissue. Mechanistic studies provide insight on the interplay between fusobacteria, other gut microbiota, barrier functions, and host responses. Studies have shown that fusobacteria activate host inflammatory responses designed to protect against pathogens that promote tumor growth. We discuss how future research identifying the pathophysiology underlying fusobacteria colon colonization during colorectal cancer may lead to new therapeutic targets for cancer. Furthermore, disease-protective strategies suppressing tumor development by targeting the local tumor environment via bacteria represent another exciting avenue for researchers and are highlighted in this review.

2021 ◽  
Author(s):  
Ling Zhu ◽  
Audrey I.S. Andersen-Civil ◽  
Laura J. Myhill ◽  
Stig M. Thamsborg ◽  
Witold Kot ◽  
...  

AbstractPhytonutrients such as cinnamaldehyde (CA) have been studied for their effects on metabolic diseases, but their influence on mucosal inflammation and immunity to enteric infection are not well documented. Here, we show that consumption of CA significantly down-regulates transcriptional pathways connected to inflammation in the small intestine of mice. During infection with the enteric helminth Heligomosomoides polygyrus, CA-treated mice displayed higher growth rates and less worms, concomitant with altered T-cell populations in mesenteric lymph nodes. Furthermore, infection-induced changes in gene pathways connected to cell cycle and mitotic activity were counteracted by CA. Mechanically, CA did not appear to exert activity through a prebiotic effect, as CA treatment did not significantly change the composition of the gut microbiota. Instead, in vitro experiments showed that CA directly induced xenobiotic metabolizing pathways in intestinal epithelial cells and suppressed endotoxin-induced inflammatory responses in macrophages. Thus, CA down-regulates inflammatory pathways in the intestinal mucosa and regulates host responses to enteric infection. These properties appear to be largely independent of the gut microbiota and instead connected to CA’s ability to induce antioxidant pathways in intestinal cells. Our results encourage further investigation into the use of CA and related phytonutrients as functional food components to promote intestinal health in humans and animals.


2020 ◽  
Author(s):  
Sama Rezasoltani ◽  
Maryam Sharafkhah ◽  
Hamid Asadzadeh Aghdaei ◽  
Meysam Olfatifar ◽  
Ehsan Nazemalhosseini Mojarad ◽  
...  

Abstract Background: Toll-like receptor (TLR) signaling has been implicated in colorectal cancer (CRC) development. Intestinal microbiota can affect the expression of TLRs, which may induce inflammatory responses and impair the gut homeostasis. Here, we aimed to evaluate certain intestinal microbiota related to TLRs expression in colonic tissues of adenomatous polyposis and CRC patients. Results: Fecal and colonic tissue samples were collected from normal controls (NC), adenomatous (AP) cases and (CRC) patients via colonoscopy for CRC screening during 2016 to 2018. Fecal samples were collected to analyze intestinal bacteria including Streptococcus bovis , Enterococcus faecalis , Bacteroides fragilis , enterotoxigenic Bacteroides fragilis (ETBF) , Fusobacterium nucleatum , Porphyromonas gingivalis, Porphyromonas spp . and Roseburia spp . by real-time PCR. Gene expression of TLR2, TLR4 and TLR5 was examined in colonic tissues by qRT-PCR. Different abundant of gut bacteria were achieved in NC, AP and CRC groups. The genes expression of TLR2, TLR4 and TLR5 were significantly different in AP and CRC cases vs. normal group (P value <0.05). There was a significant relationship between TLR2, TLR4, TLR5 genes expression and Roseburia spp., P. gingivalis and ETBF quantity in normal group. Also significant association between TLR2, TLR4 genes expression levels and the quantity of S.bovis , ETBF, Roseburia spp. and E. faecalis in AP and CRC cases were achieved. Conclusion : Intestinal expression of TLR2, TLR4 and TLR5 is dynamic and depends on gut microbiota. Hence, altered immune activation in response to dysbiotic microbiota may promote intestinal inflammation in a group of patients with AP and CRC. Keyword: Adenomatous polyposis; colorectal cancer; gut microbiota; Toll-like receptors; intestinal inflammation


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Tianqing Sang ◽  
Wenli Qiu ◽  
Wenting Li ◽  
Hongli Zhou ◽  
Haibin Chen ◽  
...  

Gut microbiota is a diverse consortium of bacteria, fungi, protozoa, and viruses in the gut of all mammals. Gut microbiota remains in steady state under normal conditions. Changes in the internal and external environment may cause gut Microbiota to be out of tune. Malignant tumors are one of the major diseases currently endangering human health. CRC (colorectal cancer) has a significant upward trend in morbidity and mortality in many parts of the world. Technological advances have not yet brought about a breakthrough in the efficacy of CRC. The development of colon cancer is closely related to gut microbiota imbalance. According to more than 60 years of clinical practice, Professor Zhongying Zhou first proposed the pathogenesis theory of “cancerous toxin” in the 1990s and believed that cancerous toxin was a key pathogenesis of tumor development. Under the guidance of the theory of cancerous toxin, combined with clinical practice, Professor Zhou created an effective anticancer Chinese herbal compound, Jiedu Xiaoai Prescription. This paper summarizes recent hotspots related to gut microbiota and the occurrence, development, and prevention of colon cancer at home and abroad. The relationship between gut microbiota and cancerous toxin theory is proposed, and the feasibility of further studying the biological basis of cancerous toxin pathogenesis theory from the perspective of gut microbiota is pointed out.


2020 ◽  
Vol 21 (15) ◽  
pp. 5389
Author(s):  
Federica Perillo ◽  
Chiara Amoroso ◽  
Francesco Strati ◽  
Maria Rita Giuffrè ◽  
Angélica Díaz-Basabe ◽  
...  

Colorectal cancer (CRC) is a multifaceted disease influenced by both environmental and genetic factors. A large body of literature has demonstrated the role of gut microbes in promoting inflammatory responses, creating a suitable microenvironment for the development of skewed interactions between the host and the gut microbiota and cancer initiation. Even if surgery is the primary therapeutic strategy, patients with advanced disease or cancer recurrence after surgery remain difficult to cure. Therefore, the gut microbiota has been proposed as a novel therapeutic target in light of recent promising data in which it seems to modulate the response to cancer immunotherapy. The use of microbe-targeted therapies, including antibiotics, prebiotics, live biotherapeutics, and fecal microbiota transplantation, is therefore considered to support current therapies in CRC management. In this review, we will discuss the importance of host−microbe interactions in CRC and how promoting homeostatic immune responses through microbe-targeted therapies may be useful in preventing/treating CRC development.


2021 ◽  
Author(s):  
María Gutiérrez-Salmerón ◽  
Silvia Rocío Rocío Lucena ◽  
Ana Chocarro-Calvo ◽  
Jose Manuel Garcia-Martinez ◽  
Rosa M Martín Orozco ◽  
...  

The existence of molecular links that facilitate colorectal cancer (CRC) development in the population with type 2 diabetes (T2D) is supported by substantial epidemiological evidence. This review summarizes how the systemic metabolic and hormonal imbalances from T2D alter CRC cell metabolism, signaling and gene expression as well as their reciprocal meshing, with an overview of CRC molecular subtypes and animal models to study the diabetes-CRC cancer links. Metabolic and growth factor checkpoints ensure a physiological cell proliferation rate compatible with limited nutrient supply. Hyperinsulinemia and hyperleptinemia in prediabetes and excess circulating glucose and lipids in T2D, overcome formidable barriers for tumor development. Increased nutrient availability favours metabolic reprogramming, alters signaling and generate mutations and epigenetic modifications, through increased reactive oxygen species and oncometabolites. The reciprocal control between metabolism and hormone signaling is lost in diabetes. Excess adipose tissue at the origin of T2D, unbalances adipokine (leptin / adiponectin) secretion ratios and function and disrupts the Insulin/IGF axes. Leptin/adiponectin imbalances in T2D are believed to promote proliferation and invasion of CRC cancer cells and contribute to inflammation, an important component of CRC tumorigenesis. Disruption of the Insulin/IGF axes in T2D targets systemic and CRC cell metabolic reprogramming, survival and proliferation. Future research to clarify the molecular diabetes-CRC links will help to prevent CRC and reduce its incidence in the diabetic population and must guide therapeutic decisions.


Author(s):  
Yiying Zhao ◽  
Qing Jiang

ABSTRACT Accumulating evidence indicates that the gut microbiota can promote or inhibit colonic inflammation and carcinogenesis. Promotion of beneficial gut bacteria is considered a promising strategy to alleviate colonic diseases including colitis and colorectal cancer. Interestingly, dietary polyphenols, which have been shown to attenuate colitis and inhibit colorectal cancer in animal models and some human studies, appear to reach relatively high concentrations in the large intestine and to interact with the gut microbial community. This review summarizes the modulatory effects of polyphenols on the gut microbiota in humans and animals under healthy and diseased conditions including colitis and colitis-associated colorectal cancer (CAC). Existing human and animal studies indicate that polyphenols and polyphenol-rich whole foods are capable of elevating butyrate producers and probiotics that alleviate colitis and inhibit CAC, such as Lactobacillus and Bifidobacterium. Studies in colitis and CAC models indicate that polyphenols decrease opportunistic pathogenic or proinflammatory microbes and counteract disease-induced dysbiosis. Consistently, polyphenols also change microbial functions, including increasing butyrate formation. Moreover, polyphenol metabolites produced by the gut microbiota appear to have anticancer and anti-inflammatory activities, protect gut barrier integrity, and mitigate inflammatory conditions in cells and animal models. Based on these results, we conclude that polyphenol-mediated alteration of microbial composition and functions, together with polyphenol metabolites produced by the gut microbiota, likely contribute to the protective effects of polyphenols on colitis and CAC. Future research is needed to validate the causal role of the polyphenol–gut microbiota interaction in polyphenols’ anti-colitis and anti-CAC effects, and to further elucidate mechanisms underlying such interaction.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 140
Author(s):  
Alessandro Parisi ◽  
Giampiero Porzio ◽  
Fanny Pulcini ◽  
Katia Cannita ◽  
Corrado Ficorella ◽  
...  

Despite the paradigmatic shift occurred in recent years for defined molecular subtypes in the metastatic setting treatment, colorectal cancer (CRC) still remains an incurable disease in most of the cases. Therefore, there is an urgent need for new tools and biomarkers for both early tumor diagnosis and to improve personalized treatment. Thus, liquid biopsy has emerged as a minimally invasive tool that is capable of detecting genomic alterations from primary or metastatic tumors, allowing the prognostic stratification of patients, the detection of the minimal residual disease after surgical or systemic treatments, the monitoring of therapeutic response, and the development of resistance, establishing an opportunity for early intervention before imaging detection or worsening of clinical symptoms. On the other hand, preclinical and clinical evidence demonstrated the role of gut microbiota dysbiosis in promoting inflammatory responses and cancer initiation. Altered gut microbiota is associated with resistance to chemo drugs and immune checkpoint inhibitors, whereas the use of microbe-targeted therapies including antibiotics, pre-probiotics, and fecal microbiota transplantation can restore response to anticancer drugs, promote immune response, and therefore support current treatment strategies in CRC. In this review, we aim to summarize preclinical and clinical evidence for the utilization of liquid biopsy and gut microbiota in CRC.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2298 ◽  
Author(s):  
Huan Wang ◽  
Lingnan Guan ◽  
Jing Li ◽  
Maode Lai ◽  
Xiaodong Wen

Background: Berberine (BBR) has been extensively reported to inhibit colorectal cancer (CRC) development, though its bioavailability is poor. Nowadays, an increasing number of studies have shown that BBR significantly accumulates in the intestines and could regulate gut microbiota in obesity. The purpose of this study was to further explore the effects of BBR on gut microbiota in Apc min/+ mice receiving a high fat diet (HFD). Methods: Apc min/+ mice received either HFD alone or HFD and BBR for 12 weeks. The intestinal tissues were collected to evaluate the efficiency of BBR on neoplasm development by hematoxylin and eosin staining. Meanwhile, immunohistochemistry was conducted to investigate the effects of BBR on cyclin D1 and β-catenin in colon tissues. Fecal samples were subjected to 16S rRNA sequencing. Results: BBR significantly reduced intestinal tumor development and altered the structure of gut microbiota in Apc min/+ mice fed with an HFD. At the phylum level, it was able to significantly inhibit the increase in Verrucomicrobia. At the genus level, it was able to suppress Akkermansia and elevate some short chain fat acid (SCFA)-producing bacteria. Conclusions: BBR significantly alleviated the development of CRC in Apc min/+ mice fed with HFD and restored the enteric microbiome community.


Sign in / Sign up

Export Citation Format

Share Document