scholarly journals Serum CD203c+ Extracellular Vesicle Serves as a Novel Diagnostic and Prognostic Biomarker for Succinylated Gelatin Induced Perioperative Hypersensitive Reaction

2021 ◽  
Vol 12 ◽  
Author(s):  
Zheng Qi ◽  
Qiong Xue ◽  
Haitao Wang ◽  
Bin Cao ◽  
Yu Su ◽  
...  

BackgroundPerioperative hypersensitivity reaction (HR) is an IgE-FcϵRI-mediated hypersensitivity reaction with degranulation and activation of mast cells and basophils. Several studies have focused on assessing the degranulation and activation of mast cells and basophils to diagnose and predict the prognosis of drug induced HR. However, it is challenging to isolate sufficiently pure mast cells and basophils from human sources to investigate. Effective biomarkers to assess mast cells and basophils activation in vivo could potentially have high diagnostic and prognostic values. In the present study, we investigated EVs pelleted from serum in patients with succinylated gelatin induced HR.MethodsExtracellular vesicles (EVs) were isolated using a total exosome isolation kit and ultracentrifugation, characterized by Western blot, transmission electron microscopy, and nanoparticle tracking analysis. Basophils were isolated from fresh peripheral blood by negative selection using Basophil Isolation Kit II. Human mast cell line was stimulated with IL4. The expression levels of proteins related to the hypersensitive response were evaluated by Western blotting and flow Cytometer. Histamine and tryptase levels were tested using a commercial ELISA kit, and gene expression of inflammatory mediators was evaluated by qRT-PCR. The receiver operating characteristic (ROC) curve was used to evaluate the specificity and sensitivity of biomarker in predicting HR.ResultsThe concentration of EVs and protein expression level of CD63, FcϵRI, CD203c and tryptase were significantly (p< 0.05) increased in HR samples. The expression level of mast cell/basophil specific CD203c were significantly increased in EVs derived from serum and basophils of HR patients, and the CD203c+-EVs production in mast cells is dramatically increased in the presence of IL4, which positively correlated with histamine, tryptase and inflammatory mediators. Moreover, the ROC curve of EVs concentration and CD203c expression indicated that CD203c+-EVs had a strong diagnostic ability for HR.ConclusionSerum CD203c+-EVs serves as a novel diagnostic and prognostic biomarker for HR.

2018 ◽  
Vol 19 (12) ◽  
pp. 4092 ◽  
Author(s):  
Chen Shao ◽  
Bingjie Fu ◽  
Ning Ji ◽  
Shunli Pan ◽  
Xiaoxia Zhao ◽  
...  

Alisol B 23-acetate (AB23A), a natural triterpenoid, has been reported to exert hepatoprotective and antitumor activities. Aiming to investigate the anti-inflammatory activity, this study examined the effect of AB23A on mast cells and allergic reaction. AB23A inhibited the degranulation of mast cells stimulated by immunoglobulin E/antigen (IgE/Ag), and also decreased the synthesis of leukotriene C4 (LTC4), production of interlukin-6 (IL-6), and expression of cyclooxygenase-2 (COX-2) in a concentration-dependent manner with no significant cytotoxicity in bone marrow-derived mast cells (BMMCs). AB23A inhibited spleen tyrosine kinase (Syk) and the downstream signaling molecules including phospholipase Cγ (PLCγ), serine-threonine protein kinase/inhibitor of nuclear factor kappa-B kinase/nuclear factor kappa-B (Akt/IKK/NF-κB), and mitogen-activated protein kinases/cytosolic phospholipase A2 (MAPK/cPLA2). Furthermore, AB23A blocked mobilization of Ca2+. Similar results were obtained in other mast cell lines Rat basophilic leukemia (RBL)-2H3 cells and a human mast cell line (HMC-1). In addition, AB23A attenuated allergic responses in an acute allergy animal model, passive cutaneous anaphylaxis (PCA). Taken together, this study suggests that AB23A inhibits the activation of mast cells and ameliorates allergic reaction, and may become a lead compound for the treatment of mast cell-mediated allergic diseases.


2018 ◽  
Author(s):  
Elin Rönnberg ◽  
Avan Ghaib ◽  
Carlos Ceriol ◽  
Mattias Enoksson ◽  
Michel Arock ◽  
...  

AbstractBackgroundEpithelial cytokines, including IL-33 and TSLP, have attracted interest because of their roles in chronic allergic inflammation-related conditions such as asthma. Mast cells are one of the major targets of IL-33, to which they respond by secreting cytokines. Most studies performed thus far have investigated the acute effects of IL-33 on mast cells.ObjectiveThe objective of this study is to investigate how acute versus prolonged exposure of human mast cells to IL-33 and TSLP affects mediator synthesis and IgE-mediated activation.MethodsHuman lung mast cells (HLMCs), cord blood-derived mast cells (CBMCs), and the ROSA mast cell line were used for this study. Surface receptor expression and the levels of mediators were measured after treatment with IL-33 and/or TSLP.ResultsIL-33 induced the acute release of cytokines. Prolonged exposure to IL-33 increased while TSLP reduced intracellular levels of tryptase. Acute IL-33 treatment strongly potentiated IgE-mediated activation. In contrast, four days of exposure to IL-33 decreased IgE-mediated activation, an effect that was accompanied by a reduction in FcεRI expression.Conclusion & Clinical RelevanceWe show that IL-33 plays dual roles for mast cell functions. The acute effect includes cytokine release and the potentiation of IgE-mediated degranulation, whereas prolonged exposure to IL-33 reduces IgE-mediated activation. We conclude that mast cells act quickly in response to the alarmin IL-33 to initiate an acute inflammatory response, whereas extended exposure to IL-33 during prolonged inflammation reduces IgE-mediated responses. This negative feedback effect suggests the presence of a novel IL-33 mediated regulatory pathway that modulates IgE-induced human mast cell responses.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2821-2828 ◽  
Author(s):  
Tatsuya Kinoshita ◽  
Kenichi Koike ◽  
Hadija Hemed Mwamtemi ◽  
Susumu Ito ◽  
Shuichi Ishida ◽  
...  

We examined the effects of retinoids on the human mast cell development using a serum-deprived culture system. When 10-week cultured mast cells derived from CD34+ cord blood cells were used as target cells, both all-trans retinoic acid (ATRA) and 9-cis RA inhibited the progeny generation under stimulation with stem cell factor (SCF) in a dose-dependent manner (the number of progeny grown by SCF plus RA at 10−7 mol/L was one tenth of the value obtained by SCF alone). The early steps in mast cell development appear to be less sensitive to RA according to the single CD34+c-kit+ cord blood cell culture study. The optimal concentration of RAs also reduced the histamine concentration in the cultured mast cells (3.00 ± 0.47 pg per cell in SCF alone, 1.44 ± 0.18 pg per cell in SCF+ATRA, and 1.41 ± 0.10 pg per cell in SCF+9-cis RA). RT-PCR analyses showed the expression of RAR, RARβ, RXR, and RXRβ messenger ribonucleic acid (mRNA) in 10-week cultured mast cells. The addition of an RAR-selective agonist at 10−10 mol/L to 10−7 mol/L decreased the number of mast cells grown in SCF, whereas an RXR-selective agonist at up to 10−8 mol/L was inactive. Among RAR subtype selective retinoids used at 10−9 mol/L to 10−7 mol/L, only the RAR agonist was equivalent to ATRA at 10−7 mol/L in its ability to inhibit mast cell growth. Conversely, the addition of excess concentrations of a RAR antagonist profoundly counteracted the retinoid-mediated suppressive effects. These results suggest that RA inhibits SCF-dependent differentiation of human mast cell progenitors through a specific receptor.


Blood ◽  
2004 ◽  
Vol 103 (3) ◽  
pp. 860-867 ◽  
Author(s):  
Naotomo Kambe ◽  
Hidefumi Hiramatsu ◽  
Mika Shimonaka ◽  
Hisanori Fujino ◽  
Ryuta Nishikomori ◽  
...  

Abstract The transplantation of primitive human cells into sublethally irradiated immune-deficient mice is the well-established in vivo system for the investigation of human hematopoietic stem cell function. Although mast cells are the progeny of hematopoietic stem cells, human mast cell development in mice that underwent human hematopoietic stem cell transplantation has not been reported. Here we report on human mast cell development after xenotransplantation of human hematopoietic stem cells into nonobese diabetic severe combined immunodeficient \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \((\mathrm{NOD{/}SCID}){/}{\gamma}_{\mathrm{c}}^{null}\) \end{document} (NOG) mice with severe combined immunodeficiency and interleukin 2 (IL-2) receptor γ-chain allelic mutation. Supported by the murine environment, human mast cell clusters developed in mouse dermis, but they required more time than other forms of human cell reconstitution. In lung and gastric tract, mucosal-type mast cells containing tryptase but lacking chymase located on gastric mucosa and in alveoli, whereas connective tissue-type mast cells containing both tryptase and chymase located on gastric submucosa and around major airways, as in the human body. Mast cell development was also observed in lymph nodes, spleen, and peritoneal cavity but not in the peripheral blood. Xenotransplantation of human hematopoietic stem cells into NOG mice can be expected to result in a highly effective model for the investigation of human mast cell development and function in vivo.


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 1807-1820 ◽  
Author(s):  
See-Ying Tam ◽  
Mindy Tsai ◽  
Masao Yamaguchi ◽  
Koji Yano ◽  
Joseph H. Butterfield ◽  
...  

Abstract Nerve growth factor (NGF ) can influence mast cell development and function in murine rodents by interacting with its receptors on mast cells. We now report the identification of mRNA transcripts of full-length tyrosine kinase-containing trkA, trkB, and trkC neurotrophin receptor genes in HMC-1 human mast cell leukemia cells. Although HMC-1 cells lacked p75 mRNA, they expressed transcripts for the exon-lacking splice variant of trkA (trkAI), truncated trkB (trkB.T1), and truncated trkC. By flow cytometry, HMC-1 cells exhibited expression of TrkA, TrkB, and TrkC receptor proteins containing full-length tyrosine kinase domains. NGF stimulation of HMC-1 cells induced tyrosine phosphorylation of TrkA protein, increased expression of the early response genes c-fos and NGF1-A, and activation of ERK-mitogen–activated protein (MAP) kinase, results which indicate that TrkA receptors in HMC-1 cells are fully functional. Highly purified populations of human lung mast cells expressed mRNAs for trkA, trkB and trkC, whereas preparations of human umbilical cord blood-derived mast cells expressed mRNAs for trkA and trkC, but not trkB. Moreover, preparations of human umbilical cord blood-derived immature mast cells not only expressed mRNA transcript and protein for TrkA, but exhibited significantly higher numbers of chymase-positive cells after the addition of NGF to their culture medium for 3 weeks. In addition, HMC-1 cells expressed mRNAs for NGF, brain-derived neurotrophic factor (BDNF ), and neurotrophin-3 (NT-3), the cognate ligands for TrkA, TrkB, and TrkC, whereas NGF and BDNF transcripts were detectable in human umbilical cord blood mast cell preparations. Taken together, our findings show that human mast cells express a functional TrkA receptor tyrosine kinase and indicate that NGF may be able to promote certain aspects of mast cell development and/or maturation in humans. Our studies also raise the possibility that human mast cells may represent a potential source for neurotrophins.


2019 ◽  
Vol 20 (10) ◽  
pp. 2603 ◽  
Author(s):  
Yaara Gorzalczany ◽  
Ronit Sagi-Eisenberg

Accumulating evidence has highlighted the accumulation of mast cells (MCs) in tumors. However, their impact on tumor development remained controversial. Indeed, cumulative data indicate an enigmatic role for MCs in cancer, whereby depending on the circumstances, which still need to be resolved, MCs function to promote or restrict tumor growth. By responding to multiple stimuli MCs release multiple inflammatory mediators, that contribute to the resolution of infection and resistance to envenomation, but also have the potency to promote or inhibit malignancy. Thus, MCs seem to possess the power to define tumor projections. Given this remarkable plasticity of MC responsiveness, there is an urgent need of understanding how MCs are activated in the tumor microenvironment (TME). We have recently reported on the direct activation of MCs upon contact with cancer cells by a mechanism involving an autocrine formation of adenosine and signaling by the A3 adenosine receptor. Here we summarized the evidence on the role of adenosine signaling in cancer, in MC mediated inflammation and in the MC-cancer crosstalk.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Elín I. Magnúsdóttir ◽  
Mirjana Grujic ◽  
Jessica Bergman ◽  
Gunnar Pejler ◽  
Malin C. Lagerström

Abstract Background Itch is an unpleasant sensation that can be debilitating, especially if it is chronic and of non-histaminergic origin, as treatment options are limited. Endothelin-1 (ET-1) is a potent endogenous vasoconstrictor that also has the ability to induce a burning, non-histaminergic pruritus when exogenously administered, by activating the endothelin A receptor (ETAR) on primary afferents. ET-1 is released endogenously by several cell-types found in the skin, including macrophages and keratinocytes. Mast cells express ETARs and can thereby be degranulated by ET-1, and mast cell proteases chymase and carboxypeptidase A3 (CPA3) are known to either generate or degrade ET-1, respectively, suggesting a role for mast cell proteases in the regulation of ET-1-induced itch. The mouse mast cell proteases (mMCPs) mMCP4 (chymase), mMCP6 (tryptase), and CPA3 are found in connective tissue type mast cells and are the closest functional homologs to human mast cell proteases, but little is known about their role in endothelin-induced itch. Methods In this study, we evaluated the effects of mast cell protease deficiency on scratching behavior induced by ET-1. To investigate this, mMCP knock-out and transgenic mice were injected intradermally with ET-1 and their scratching behavior was recorded and analyzed. Results CPA3-deficient mice and mice lacking all three proteases demonstrated highly elevated levels of scratching behavior compared with wild-type controls. A modest increase in the number of scratching bouts was also seen in mMCP6-deficient mice, while mMCP4-deficiency did not have any effect. Conclusion Altogether, these findings identify a prominent role for the mast cell proteases, in particular CPA3, in the protection against itch induced by ET-1.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Hyun Ju Do ◽  
Tae Woo Oh ◽  
Kwang-Il Park

This study is aimed at determining whether Sesamum indicum Linn. beneficially influences FcεRI-mediated allergic reactions in RBL-2H3 mast cells; it is also aimed at further investigating Lyn/Fyn and Syk signaling pathways. To examine the antiallergic effect of Sesamum indicum Linn. extract (SIE), we treated antigen/immunoglobulin E- (IgE-) sensitized mast cells with extracts of various concentrations. We examined the degranulation release and concentrations of inflammatory mediators. Additionally, the expressions of genes involved in the FcεRI and arachidonate signaling pathways were examined. SIE inhibited the degranulation and secretion of inflammatory mediators in antigen/IgE-sensitized mast cells. SIE reduced the expressions of FcεRI signaling-related genes, such as Syk, Lyn, and Fyn, and the phosphorylation of extracellular signal-regulated kinase in antigen/IgE-sensitized mast cells. Additionally, in late allergic responses, SIE reduced PGD2 release and COX-2 and cPLA2 phosphorylation expression in FcεRI-mediated mast cell activation. Lastly, 250–500 mg/kg SIE significantly attenuated the Ag/IgE-induced passive cutaneous anaphylaxis (PCA) reaction in mice. The potent effect of SIE on RBL-2H3 mast cell activation indicates that the extract could potentially be used as a novel inhibitor against allergic reactions.


Blood ◽  
2005 ◽  
Vol 105 (2) ◽  
pp. 592-599 ◽  
Author(s):  
Marianna Kulka ◽  
Dean D. Metcalfe

Abstract T-helper 1 (TH1) (interferon-γ [IFN-γ]) and TH2 (interleukin-4 [IL-4] and IL-5) cytokines have been variably reported to alter human mast cell numbers in complex culture systems. The effects of these cytokines on the kinetics of cell division and cell death are unknown, and their effect on mast cell behavior is relevant to anticipate the consequences of in vivo strategies that alter cytokine levels. To determine the effect of these cytokines on stem cell factor (SCF)–dependent human mast cell production, we used highresolution tracking of cell division and correlated the results with cell apoptosis, expression of Kit, and mast cell degranulation. When IFN-γ, IL-5, or IL-4 was administered over 8 weeks, we found each cytokine decreased the mast number through a different mechanism. IFN-γ inhibited early progenitor cell division, IL-4 down-regulated early Kit expression, and IL-5 blocked later cell division. Further, IL-4 and IFN-γ had the greatest suppressive effect on degranulation and FcϵRI expression. When these cytokines were administered to mature mast cells, IFN-γ and IL-5 had no effect on degranulation and cell division, but IL-4 induced division and potentiated FcϵRI-mediated degranulation. Thus, exposure of human mast cells to IL-4, IL-5, and IFN-γ during growth and differentiation generally down-regulated mast cell number and function, whereas IL-4 increased mature mast cell division and degranulation.


1996 ◽  
Vol 183 (6) ◽  
pp. 2681-2686 ◽  
Author(s):  
J J Costa ◽  
G D Demetri ◽  
T J Harrist ◽  
A M Dvorak ◽  
D F Hayes ◽  
...  

Stem cell factor (SCF), also known as mast cell growth factor, kit ligand, and steel factor, is the ligand for the tyrosine kinase receptor (SCFR) that is encoded by the c-kit proto-oncogene. We analyzed the effects of recombinant human SCF (r-hSCF, 5-50 micrograms/kg/day, injected subcutaneously) on mast cells and melanocytes in a phase I study of 10 patients with advanced breast carcinoma. A wheal and flare reaction developed at each r-hSCF injection site; by electron microscopy, most dermal mast cells at these sites exhibited extensive, anaphylactic-type degranulation. A 14-d course of r-hSCF significantly increased dermal mast cell density at sites distant to those injected with the cytokine and also increased both urinary levels of the major histamine metabolite, methyl-histamine, and serum levels of mast cell alpha-tryptase. Five subjects developed areas of persistent hyperpigmentation at r-hSCF injection sites; by light microscopy, these sites exhibited markedly increased epidermal melanization and increased numbers of melanocytes. The demonstration that r-hSCF can promote both the hyperplasia and the functional activation of human mast cells and melanocytes in vivo has implications for our understanding of the role of endogenous SCF in health and disease. These findings also indicate that the interaction between SCF and its receptor represents a potential therapeutic target for regulating the numbers and functional activity of both mast cells and cutaneous melanocytes.


Sign in / Sign up

Export Citation Format

Share Document