scholarly journals HIVEP1 Is a Negative Regulator of NF-κB That Inhibits Systemic Inflammation in Sepsis

2021 ◽  
Vol 12 ◽  
Author(s):  
Hisatake Matsumoto ◽  
Brendon P. Scicluna ◽  
Kin Ki Jim ◽  
Fahimeh Falahi ◽  
Wanhai Qin ◽  
...  

Our previous work identified human immunodeficiency virus type I enhancer binding protein 1 (HIVEP1) as a putative driver of LPS-induced NF-κB signaling in humans in vivo. While HIVEP1 is known to interact with NF-ĸB binding DNA motifs, its function in mammalian cells is unknown. We report increased HIVEP1 mRNA expression in monocytes from patients with sepsis and monocytes stimulated by Toll-like receptor agonists and bacteria. In complementary overexpression and gene deletion experiments HIVEP1 was shown to inhibit NF-ĸB activity and induction of NF-ĸB responsive genes. RNA sequencing demonstrated profound transcriptomic changes in HIVEP1 deficient monocytic cells and transcription factor binding site analysis showed enrichment for κB site regions. HIVEP1 bound to the promoter regions of NF-ĸB responsive genes. Inhibition of cytokine production by HIVEP1 was confirmed in LPS-stimulated murine Hivep1-/- macrophages and HIVEP1 knockdown zebrafish exposed to the common sepsis pathogen Streptococcus pneumoniae. These results identify HIVEP1 as a negative regulator of NF-κB in monocytes/macrophages that inhibits proinflammatory reactions in response to bacterial agonists in vitro and in vivo.

2005 ◽  
Vol 201 (6) ◽  
pp. 859-870 ◽  
Author(s):  
Junko Sasaki ◽  
Takehiko Sasaki ◽  
Masakazu Yamazaki ◽  
Kunie Matsuoka ◽  
Choji Taya ◽  
...  

The membrane phospholipid phosphatidylinositol 4, 5-bisphosphate [PI(4,5)P2] is a critical signal transducer in eukaryotic cells. However, the physiological roles of the type I phosphatidylinositol phosphate kinases (PIPKIs) that synthesize PI(4,5)P2 are largely unknown. Here, we show that the α isozyme of PIPKI (PIPKIα) negatively regulates mast cell functions and anaphylactic responses. In vitro, PIPKIα-deficient mast cells exhibited increased degranulation and cytokine production after Fcε receptor-I cross-linking. In vivo, PIPKIα−/− mice displayed enhanced passive cutaneous and systemic anaphylaxis. Filamentous actin was diminished in PIPKIα−/− mast cells, and enhanced degranulation observed in the absence of PIPKIα was also seen in wild-type mast cells treated with latrunculin, a pharmacological inhibitor of actin polymerization. Moreover, the association of FcεRI with lipid rafts and FcεRI-mediated activation of signaling proteins was augmented in PIPKIα−/− mast cells. Thus, PIPKIα is a negative regulator of FcεRI-mediated cellular responses and anaphylaxis, which functions by controlling the actin cytoskeleton and dynamics of FcεRI signaling. Our results indicate that the different PIPKI isoforms might be functionally specialized.


2011 ◽  
Vol 22 (11) ◽  
pp. 1836-1844 ◽  
Author(s):  
Maria Fragiadaki ◽  
Tetsurou Ikeda ◽  
Abigail Witherden ◽  
Roger M Mason ◽  
David Abraham ◽  
...  

Transforming growth factor-β (TGF-β) is an inducer of type I collagen, and uncontrolled collagen production leads to tissue scarring and organ failure. Here we hypothesize that uncovering a molecular mechanism that enables us to switch off type I collagen may prove beneficial in treating fibrosis. For the first time, to our knowledge, we provide evidence that CUX1 acts as a negative regulator of TGF-β and potent inhibitor of type I collagen transcription. We show that CUX1, a CCAAT displacement protein, is associated with reduced expression of type I collagen both in vivo and in vitro. We show that enhancing the expression of CUX1 results in effective suppression of type I collagen. We demonstrate that the mechanism by which CUX1 suppresses type I collagen is through interfering with gene transcription. In addition, using an in vivo murine model of aristolochic acid (AA)-induced interstitial fibrosis and human AA nephropathy, we observe that CUX1 expression was significantly reduced in fibrotic tissue when compared to control samples. Moreover, silencing of CUX1 in fibroblasts from kidneys of patients with renal fibrosis resulted in increased type I collagen expression. Furthermore, the abnormal CUX1 expression was restored by addition of TGF-β via the p38 mitogen-activated protein kinase pathway. Collectively, our study demonstrates that modifications of CUX1 expression lead to aberrant expression of type I collagen, which may provide a molecular basis for fibrogenesis.


Blood ◽  
2009 ◽  
Vol 113 (8) ◽  
pp. 1818-1828 ◽  
Author(s):  
Cyndi Wong ◽  
Yong Liu ◽  
Jana Yip ◽  
Rochna Chand ◽  
Janet L. Wee ◽  
...  

Abstract Carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1) is a surface glycoprotein expressed on various blood cells, epithelial cells, and vascular cells. CEACAM1 possesses adhesive and signaling properties mediated by its intrinsic immunoreceptor tyrosine-based inhibitory motifs that recruit SHP-1 protein-tyrosine phosphatase. In this study, we demonstrate that CEACAM1 is expressed on the surface and in intracellular pools of platelets. In addition, CEACAM1 serves to negatively regulate signaling of platelets by collagen through the glycoprotein VI (GPVI)/Fc receptor (FcR)–γ-chain. ceacam1−/− platelets displayed enhanced type I collagen and GPVI-selective ligand, collagen-related peptide (CRP), CRP-mediated platelet aggregation, enhanced platelet adhesion on type I collagen, and elevated CRP-mediated alpha and dense granule secretion. Platelets derived from ceacam1−/− mice form larger thrombi when perfused over a collagen matrix under arterial flow compared with wild-type mice. Furthermore, using intravital microscopy to ferric chloride-injured mesenteric arterioles, we show that thrombi formed in vivo in ceacam1−/− mice were larger and were more stable than those in wild-type mice. GPVI depletion using monoclonal antibody JAQ1 treatment of ceacam1−/− mice showed a reversal in the more stable thrombus growth phenotype. ceacam1−/− mice were more susceptible to type I collagen–induced pulmonary thromboembolism than wild-type mice. Thus, CEACAM1 acts as a negative regulator of platelet-collagen interactions and of thrombus growth involving the collagen GPVI receptor in vitro and in vivo.


1998 ◽  
Vol 188 (7) ◽  
pp. 1255-1265 ◽  
Author(s):  
Yoshihiro Honda ◽  
Linda Rogers ◽  
Koh Nakata ◽  
Ben-Yang Zhao ◽  
Richard Pine ◽  
...  

We have previously observed that HIV-1 replication is suppressed in uninflamed lung and increased during tuberculosis. In vitro THP-1 cell–derived macrophages inhibited HIV-1 replication after infection with Mycobacterium tuberculosis. Suppression of HIV-1 replication was associated with inhibition of the HIV-1 long terminal repeat (LTR) and induction of ISGF-3, a type I interferon (IFN)–specific transcription factor. Repression of the HIV-1 LTR required intact CCAAT/enhancer binding protein (C/EBP) sites. THP-1 cell–derived macrophages infected with M. tuberculosis, lipopolysaccharide, or IFN-β induced the 16-kD inhibitory C/EBPβ isoform and coincidentally repressed HIV-1 LTR transcription. C/EBPβ was the predominant C/EBP family member produced in THP-1 macrophages during HIV-1 LTR repression. In vivo, alveolar macrophages from uninflamed lung strongly expressed inhibitory 16-kD C/EBPβ, but pulmonary tuberculosis abolished inhibitory C/EBPβ expression and induced a novel C/EBP DNA binding protein. Therefore, in vitro, proinflammatory stimulation produces an IFN response inhibiting viral replication by induction of a C/EBPβ transcriptional repressor. THP-1 cell–derived macrophages stimulated with type I IFN are similar to alveolar macrophages in the uninflamed lung in vivo. In contrast, the cellular immune response in active pulmonary tuberculosis disrupts this innate immunity, switching C/EBP expression and allowing high level viral replication.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3063-3063
Author(s):  
Andrew S. McDaniel

Abstract p21-activated kinases (Paks) are downstream mediators of Rho GTPase proteins and have been implicated in yeast and immortalized cells as positive regulators of MAPK pathway members in modulating cell growth and cytoskeletal functions. However, their role in primary mammalian cells has not been described. NF1 encodes neurofibromin, which negatively regulates p21Ras activity by stimulating its intrinsic GTPase activity, and accelerating hydrolysis of Ras from the GTP to the GDP confirmation. Disruption of the NF1 locus results in neurofibromatosis type I (NF1), an inherited disorder characterized by the development of neurofibromas that contain large numbers of degranulating mast cells that have been implicated in tumor progression. Utilizing a genetic intercross of Pak 1−/− mice with mice haploinsufficient at the Nf1 locus, we studied the role of Pak1 in the context of normal and hyperactivated Ras-MAPK signaling in primary inflammatory mast cells. Pak1 was found to directly contribute to Ras-dependent signaling by modulating both Raf-1, Mek-1 and ERK1/2 activation. Loss of Pak1 fully corrects the hyperphosphorylation of ERK1/2 found in Nf1+/− mast cells to that of wild type controls. Deletion of Pak1 in Nf1+/− mast cells is associated with a correction of Kit ligand mediated proliferation to wild type levels in vitro. Further, after subcutaneous administration of Kit ligand via micro osmotic pumps, which is an established model that stimulates local proliferation of mast cells in vivo (Ingram, JEM 2001), we confirmed that genetic disruption of Pak1 corrects the proliferation of Nf1+/− mast cells in vivo to that of wild type controls. These data provide direct genetic evidence that Pak1 modulates the Ras-Raf-Mek-Erk pathway and identifies a specific molecular target within the inflammatory tumor microenvironment for the treatment or prevention of neurofibromas.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Huawei Wang ◽  
Chuanlong Zang ◽  
Mengtian Ren ◽  
Mengdi Shang ◽  
Zhenghua Wang ◽  
...  

Abstract The nucleosome is the basic structural repeating unit of chromatin. DNA damage and cell apoptosis release nucleosomes into the blood circulatory system, and increased levels of circulating nucleosomes have been observed to be related to inflammation and autoimmune diseases. However, how circulating nucleosomes trigger immune responses has not been fully elucidated. cGAS (cGMP-AMP synthase) is a recently discovered pattern recognition receptor that senses cytoplasmic double-stranded DNA (dsDNA). In this study, we employed in vitro reconstituted nucleosomes to examine whether extracellular nucleosomes can gain access to the cytoplasm of mammalian cells to induce immune responses by activating cGAS. We showed that nucleosomes can be taken up by various mammalian cells. Additionally, we found that in vitro reconstituted mononucleosomes and oligonucleosomes can be recognized by cGAS. Compared to dsDNA, nucleosomes exhibit higher binding affinities to cGAS but considerably lower potency in cGAS activation. Incubation of monocytic cells with reconstituted nucleosomes leads to limited production of type I interferons and proinflammatory cytokines via a cGAS-dependent mechanism. This proof-of-concept study reveals the cGAS-dependent immunogenicity of nucleosomes and highlights the potential roles of circulating nucleosomes in autoimmune diseases, inflammation, and antitumour immunity.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xin Wu ◽  
Caoqi Lei ◽  
Tian Xia ◽  
Xuan Zhong ◽  
Qing Yang ◽  
...  

Abstract TIR domain-containing adaptor inducing interferon-β (TRIF) is an essential adaptor protein required for innate immune responses mediated by Toll-like receptor (TLR) 3- and TLR4. Here we identify USP19 as a negative regulator of TLR3/4-mediated signaling. USP19 deficiency increases the production of type I interferons (IFN) and proinflammatory cytokines induced by poly(I:C) or LPS in vitro and in vivo. Usp19-/- mice have more serious inflammation after poly(I:C) or LPS treatment, and are more susceptible to inflammatory damages and death following Salmonella typhimurium infection. Mechanistically, USP19 interacts with TRIF and catalyzes the removal of TRIF K27-linked polyubiquitin moieties, thereby impairing the recruitment of TRIF to TLR3/4. In addition, the RING E3 ubiquitin ligase complex Cullin-3-Rbx1-KCTD10 catalyzes K27-linked polyubiquitination of TRIF at K523, and deficiency of this complex inhibits TLR3/4-mediated innate immune signaling. Our findings thus reveal TRIF K27-linked polyubiquitination and deubiquitination as a critical regulatory mechanism of TLR3/4-mediated innate immune responses.


2003 ◽  
Vol 23 (22) ◽  
pp. 8030-8041 ◽  
Author(s):  
Lee Ann Cooper ◽  
Tang-Long Shen ◽  
Jun-Lin Guan

ABSTRACT We have investigated a role for the amino-terminal FERM-like domain of the focal adhesion kinase (FAK) as a negative regulator of its own activity and phosphorylation state. Deletion of the first 375 amino acids from the amino terminus of FAK increases its catalytic activity in vitro, its phosphorylation when expressed in mammalian cells, and the phosphorylation of a FAK substrate, paxillin. Deletion mutants are phosphorylated in suspension, suggesting that they are no longer regulated by adhesion. The amino terminus of FAK can interact with the kinase domain of FAK in vitro and in vivo, suggesting that it might act as an autoinhibitor of FAK activity. The amino terminus of FAK can act in trans to inhibit FAK phosphorylation when expressed in mammalian cells or to directly inhibit FAK activity in vitro. Expression of the amino terminus of FAK inhibits cell cycle progression in CHO cells, consistent with its inhibition of FAK phosphorylation and function in trans. A glutathione S-transferase fusion protein containing the cytoplasmic tail of the β1 integrin stimulates FAK activity in vitro, suggesting that FAK could be regulated by molecular interactions with the amino terminus. Based on these and previous data, we propose a working model for activation of FAK in cell adhesion.


Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3129-3135 ◽  
Author(s):  
Jonas Larsson ◽  
Ulrika Blank ◽  
Hildur Helgadottir ◽  
Jon Mar Björnsson ◽  
Mats Ehinger ◽  
...  

Abstract Studies in vitro implicate transforming growth factor β (TGF-β) as a key regulator of hematopoiesis with potent inhibitory effects on progenitor and stem cell proliferation. In vivo studies have been hampered by early lethality of knock-out mice for TGF-β isoforms and the receptors. To directly assess the role of TGF-β signaling for hematopoiesis and hematopoietic stem cell (HSC) function in vivo, we generated a conditional knock-out model in which a disruption of the TGF-β type I receptor (TβRI) gene was induced in adult mice. HSCs from induced mice showed increased proliferation recruitment when cultured as single cells under low stimulatory conditions in vitro, consistent with an inhibitory role of TGF-β in HSC proliferation. However, induced TβRI null mice show normal in vivo hematopoiesis with normal numbers and differentiation ability of hematopoietic progenitor cells. Furthermore HSCs from TβRI null mice exhibit a normal cell cycle distribution and do not differ in their ability long term to repopulate primary and secondary recipient mice following bone marrow transplantation. These findings challenge the classical view that TGF-β is an essential negative regulator of hematopoietic stem cells under physiologic conditions in vivo.


2011 ◽  
Vol 439 (1) ◽  
pp. 151-159 ◽  
Author(s):  
Chia-Lun Wu ◽  
Bree Buszard ◽  
Chun-Hung Teng ◽  
Wei-Lin Chen ◽  
Coral G. Warr ◽  
...  

PTP1B (protein tyrosine phosphatase 1B) is a negative regulator of IR (insulin receptor) activation and glucose homoeostasis, but the precise molecular mechanisms governing PTP1B substrate selectivity and the regulation of insulin signalling remain unclear. In the present study we have taken advantage of Drosophila as a model organism to establish the role of the SH3 (Src homology 3)/SH2 adaptor protein Dock (Dreadlocks) and its mammalian counterpart Nck in IR regulation by PTPs. We demonstrate that the PTP1B orthologue PTP61F dephosphorylates the Drosophila IR in S2 cells in vitro and attenuates IR-induced eye overgrowth in vivo. Our studies indicate that Dock forms a stable complex with PTP61F and that Dock/PTP61F associate with the IR in response to insulin. We report that Dock is required for effective IR dephosphorylation and inactivation by PTP61F in vitro and in vivo. Furthermore, we demonstrate that Nck interacts with PTP1B and that the Nck/PTP1B complex inducibly associates with the IR for the attenuation of IR activation in mammalian cells. Our studies reveal for the first time that the adaptor protein Dock/Nck attenuates insulin signalling by recruiting PTP61F/PTP1B to its substrate, the IR.


Sign in / Sign up

Export Citation Format

Share Document