scholarly journals Validation of Non-photochemical Quenching Corrections for Chlorophyll-a Measurements Aboard Ships of Opportunity

2021 ◽  
Vol 8 ◽  
Author(s):  
Hana Travers-Smith ◽  
Fernanda Giannini ◽  
Akash R. Sastri ◽  
Maycira Costa

The in vivo fluorescence of chlorophyll-a is commonly used as a proxy for phytoplankton biomass. Measurement of in vivo fluorescence in the field is attractive because it can be made at high spatial temporal, and vertical resolution relative to discrete sampling and pigment extraction. Fluorometers installed on ships of opportunity provide a cost-effective alternative to many of the traditional sampling methods. However, fluorescence-based estimates of chlorophyll-a can be impacted by sensor calibration and biofouling, variations in phytoplankton taxonomy and physiology (such as non-photochemical quenching) and the influence of other fluorescing matters in the water. Several methods have been proposed to address these issues separately, but few studies have addressed the interaction of multiple sources of error in the in vivo Chl-a fluorescence signal. Here, we demonstrate a method to improve the accuracy of chlorophyll-a concentration retrieved from a coastal ferry system, operating in a dynamic estuarine system. First, we used HPLC chlorophyll-a measurements acquired in low-light conditions to correct sensor level bias. Next, we tested three methods to correct the effect of non-photochemical quenching and evaluated the accuracy of each method using HPLC. As our study area is in highly dynamic coastal waters, we also evaluated the accuracy of our correction procedure across a range of irradiance and biogeochemical conditions. We found that sensor bias accounted for a significant portion of error in the fluorescence signal. The NPQ correction developed by Davis et al. (2008) best improved correspondence between in vivo Chl-a fluorescence and HPLC-based measurement of extracted Chl-a. We suggest the use of this correction for in vivo Chl-a measurements along with pre-processing steps to correct potential sensor biofouling and bias.

2002 ◽  
Vol 29 (10) ◽  
pp. 1141 ◽  
Author(s):  
Govindjee ◽  
Manfredo J. Seufferheld

This paper deals first with the early, although incomplete, history of photoinhibition, of 'non-QA-related chlorophyll (Chl) a fluorescence changes', and the xanthophyll cycle that preceded the discovery of the correlation between non-photochemical quenching of Chl a fluorescence (NPQ) and conversion of violaxanthin to zeaxanthin. It includes the crucial observation that the fluorescence intensity quenching, when plants are exposed to excess light, is indeed due to a change in the quantum yield of fluorescence. The history ends with a novel turn in the direction of research — isolation and characterization of NPQ xanthophyll-cycle mutants of Chlamydomonas reinhardtii Dangeard and Arabidopsis thaliana (L.) Heynh., blocked in conversion of violaxanthin to zeaxanthin, and zeaxanthin to violaxanthin, respectively. In the second part of the paper, we extend the characterization of two of these mutants (npq1, which accumulates violaxanthin, and npq2, which accumulates zeaxanthin) through parallel measurements on growth, and several assays of PSII function: oxygen evolution, Chl a fluorescence transient (the Kautsky effect), the two-electron gate function of PSII, the back reactions around PSII, and measurements of NPQ by pulse-amplitude modulation (PAM 2000) fluorimeter. We show that, in the npq2 mutant, Chl a fluorescence is quenched both in the absence and presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). However, no differences are observed in functioning of the electron-acceptor side of PSII — both the two-electron gate and the back reactions are unchanged. In addition, the role of protons in fluorescence quenching during the 'P-to-S' fluorescence transient was confirmed by the effect of nigericin in decreasing this quenching effect. Also, the absence of zeaxanthin in the npq1 mutant leads to reduced oxygen evolution at high light intensity, suggesting another protective role of this carotenoid. The available data not only support the current model of NPQ that includes roles for both pH and the xanthophylls, but also are consistent with additional protective roles of zeaxanthin. However, this paper emphasizes that we still lack sufficient understanding of the different parts of NPQ, and that the precise mechanisms of photoprotection in the alga Chlamydomonas may not be the same as those in higher plants.


2011 ◽  
Vol 8 (8) ◽  
pp. 2391-2406 ◽  
Author(s):  
A. Mignot ◽  
H. Claustre ◽  
F. D'Ortenzio ◽  
X. Xing ◽  
A. Poteau ◽  
...  

Abstract. In vivo fluorescence of Chlorophyll-a (Chl-a) is a potentially useful property to study the vertical distribution of phytoplankton biomass. However the technique is presently not fully exploited as it should be, essentially because of the difficulties in converting the fluorescence signal into an accurate Chl-a concentration. These difficulties arise noticeably from natural variations in the Chl-a fluorescence relationship, which is under the control of community composition as well as of their nutrient and light status. As a consequence, although vertical profiles of fluorescence are likely the most recorded biological property in the open ocean, the corresponding large databases are underexploited. Here with the aim to convert a fluorescence profile into a Chl-a concentration profile, we test the hypothesis that the Chl-a concentration can be gathered from the sole knowledge of the shape of the fluorescence profile. We analyze a large dataset from 18 oceanographic cruises conducted in case-1 waters from the highly stratified hyperoligotrophic waters (surface Chl-a = 0.02 mg m−3) of the South Pacific Gyre to the eutrophic waters of the Benguela upwelling (surface Chl-a = 32 mg m−3) and including the very deep mixed waters in the North Atlantic (Mixed Layer Depth = 690 m). This dataset encompasses more than 700 vertical profiles of Chl-a fluorescence as well as accurate estimations of Chl-a by High Performance Liquid Chromatography (HPLC). Two typical fluorescence profiles are identified, the uniform profile, characterized by a homogeneous layer roughly corresponding to the mixed layer, and the non-uniform profile, characterized by the presence of a Deep Chlorophyll Maximum. Using appropriate mathematical parameterizations, a fluorescence profile is subsequently represented by 3 or 5 shape parameters for uniform or non-uniform profiles, respectively. For both situations, an empirical model is developed to predict the "true" Chl-a concentration from these shape parameters. This model is then used to calibrate a fluorescence profile in Chl-a units. The validation of the approach provides satisfactory results with a median absolute percent deviation of 33 % when comparing the HPLC Chl-a profiles to the Chl-a-calibrated fluorescence. The proposed approach thus opens the possibility to produce Chl-a climatologies from uncalibrated fluorescence profile databases that have been acquired in the past and to which numerous new profiles will be added, thanks to the recent availability of autonomous platforms (profiling floats, gliders and animals) instrumented with miniature fluorometers.


2020 ◽  
Author(s):  
Julianne M. Troiano ◽  
Federico Perozeni ◽  
Raymundo Moya ◽  
Luca Zuliani ◽  
Kwangryul Baek ◽  
...  

AbstractUnder high light conditions, oxygenic photosynthetic organisms avoid photodamage by thermally dissipating excess absorbed energy, which is called non-photochemical quenching (NPQ). In green algae, a chlorophyll and carotenoid-binding protein, light-harvesting complex stress-related (LHCSR3), detects excess energy via pH and serves as a quenching site. However, the mechanisms by which LHCSR3 functions have not been determined. Using a combined in vivo and in vitro approach, we identify two parallel yet distinct quenching processes, individually controlled by pH and carotenoid composition, and their likely molecular origin within LHCSR3 from Chlamydomonas reinhardtii. The pH-controlled quenching is removed within a mutant LHCSR3 that lacks the protonable residues responsible for sensing pH. Constitutive quenching in zeaxanthin-enriched systems demonstrates zeaxanthin-controlled quenching, which may be shared with other light-harvesting complexes. We show that both quenching processes prevent the formation of damaging reactive oxygen species, and thus provide distinct timescales and mechanisms of protection in a changing environment.


2014 ◽  
Vol 60 (No. 6) ◽  
pp. 274-279 ◽  
Author(s):  
A. Nasraoui-Hajaji ◽  
H. Gouia

N-fertilization type affected differently tomato growth. In the field experiment, hydroponic cultures were conducted using NO<sub>3</sub>-N (5 mmol); mixture of KNO<sub>3</sub>-N (3 mmol) and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>-N (2 mmol); NH<sub>4</sub><sup>+</sup>-N (5 mmol) or urea&nbsp;(5 mmol) as nitrogen source. Compared to nitrate, ammonium and urea had negative effects on morphology and dry matter production. Effects of the different nitrogen forms were investigated by measuring several photosynthesis parameters and chl a fluorescence. Two different significant types of reaction were found. When nitrogen was added as ammonium or urea, dry weight, chlorophyll tenor, transpiration rate, stomatal conductance and photosynthetic activity were inhibited. Supply of ammonium or urea, reduced the ratio (F<sub>v</sub>/F<sub>m</sub>), photochemical quenching and enhanced the non photochemical quenching. These data suggest that the adverse decrease in tomato growth under ammonium or urea supply may be related principally to inhibition of net photosynthesis activity. The high non photochemical quenching shown in tomato fed with ammonium or urea indicated that PS II was the inhibitory site of NH<sub>4</sub><sup>+</sup>-N which was directly uptaken by roots, or librated via urea hydrolysis cycle.


Biologia ◽  
2017 ◽  
Vol 72 (6) ◽  
Author(s):  
Nuran Durmus ◽  
Abdullah Muhammed Yesilyurt ◽  
Necla Pehlivan ◽  
Sengul Alpay Karaoglu

AbstractAgriculture needs to be sustained by organic processes in current era as population explosion energy and the number of individuals undernourished are raising public concerns. Global warming poses additional threat by lifting the damage of salt stress especially in agro-economically vital crops like maize whose cultivation dates back to Mayans. To that end, cost-effective and organic fungal agents may be great candidates in stress resilience. We isolated the fungal strain from the soil of tea plants and characterized that via 5.8 S rDNA gene with internal transcribed spacer ITS-1 and ITS-2 regions, then named the target strain as TA. Reduced maximum quantum efficiency of PS II (Fv/Fm), the effective quantum yield of PS2 (ΦPS2), electron transport rate (ETR), photochemical quenching (qP) and increased non-photochemical quenching (NPQ) were detected in maize plants stressed with dose dependent salt. Enhanced Fv/Fm, ΦPS2, ETR, qP and decreased NPQ was observed in TA primed plus NaCl treated plants. TA biopriming significantly increased the lengths, fresh and dry weights of root/shoots and decreased the lipid peroxidation. Maize seedlings bioprimed with TA had less MDA and higher soluble protein, proline, total chlorophyll, carotenoid and RWC under NaCl. Furthermore, SOD, GPX and GR activities were much more increased in root and leaves of TA primed seedlings, however CAT activity did not significantly change. This is the first report to our knowledge that TA reverses the damage of NaCl stress on maize growth through improving water status, antioxidant machinery and especially photosynthetic capacity.


2002 ◽  
Vol 29 (4) ◽  
pp. 425 ◽  
Author(s):  
Govindjee ◽  
Paul Spilotro

A major photoprotective mechanism that plants employ against excess light involves interplay between the xanthophyll cycle and the accumulation of protons. Using mutants in the xanthophyll cycle, the roles of violaxanthin, antheraxanthin and zeaxanthin have already been well established. In this paper, we present data on intact leaves of a mutant [coupling factor quick recovery mutant (cfq); atpC1:E244K] of Arabidopsis thaliana that we expected, based on 515-nm absorbance changes (Gabrys et al. 1994, Plant Physiology 104, 769–776), to have differences in light-induced ΔpH. The significance of this paper is: (i) it is the first study of the photoprotective energy dissipation involving a mutant of the pH gradient; it establishes that protons play an important role in the pattern of non-photochemical quenching (NPQ) of chlorophyll (Chl) a fluorescence; and (ii) differences between the cfq and the wild type (wt) are observed only under subsaturating light intensities, and are strongest in the initial few minutes of the induction period. Our results on light-intensity dependent Chl* a fluorescence transients (the Kautsky effect), and on NPQ of Chl a fluorescence, at 50–250 μmol photons m–2 s–1 demonstrate: (i) the ‘P-to-S’ (or ‘T’) decay, known to be related to [H+] (Briantais et al. 1979, Biochimica et Biophysica Acta 548, 128–138), is slowed in the mutant; and (ii) the pattern of NPQ kinetics is different in the initial 100 s — in the wt leaves, there is a marked rise and decline, and in the cfq mutant, there is a slowed rise. These differences are absent at 750 μmol photons m–2 s–1. Pre-illumination and nigericin (an uncoupler that dissipates the proton gradient) treatment of the cfq mutant, which has lower ΔpH relative to wild type, confirm the conclusion that protons play an important role in the quenching of Chl a fluorescence.


2012 ◽  
Vol 367 (1608) ◽  
pp. 3503-3514 ◽  
Author(s):  
Shizue Matsubara ◽  
Britta Förster ◽  
Melinda Waterman ◽  
Sharon A. Robinson ◽  
Barry J. Pogson ◽  
...  

Half a century of research into the physiology and biochemistry of sun–shade acclimation in diverse plants has provided reality checks for contemporary understanding of thylakoid membrane dynamics. This paper reviews recent insights into photosynthetic efficiency and photoprotection from studies of two xanthophyll cycles in old shade leaves from the inner canopy of the tropical trees Inga sapindoides and Persea americana (avocado). It then presents new physiological data from avocado on the time frames of the slow coordinated photosynthetic development of sink leaves in sunlight and on the slow renovation of photosynthetic properties in old leaves during sun to shade and shade to sun acclimation. In so doing, it grapples with issues in vivo that seem relevant to our increasingly sophisticated understanding of Δ pH-dependent, xanthophyll-pigment-stabilized non-photochemical quenching in the antenna of PSII in thylakoid membranes in vitro .


2020 ◽  
Author(s):  
Paula Demétrio de Souza França ◽  
Susanne Kossatz ◽  
Christian Brand ◽  
Daniella Karassawa Zanoni ◽  
Sheryl Roberts ◽  
...  

AbstractPurposeVisual inspection and biopsy is the current standard of care for oral cancer diagnosis, but is subject to misinterpretation and consequently to misdiagnosis. Topically applied PARPi-FL is a molecularly specific, fluorescent contrast-based approach that may fulfil the unmet need for a simple, in vivo, non-invasive, cost-effective, point-of-care method for the early diagnosis of oral cancer. Here, we present results from a phase I safety and feasibility study on fluorescent, topically applied PARPi-FL.Patients and MethodsTwelve patients with a histologically proven squamous cell carcinoma of the oral cavity (OSCC) gargled a PARPi-FL solution for 60 seconds (15 mL, 100 nM, 250 nM, 500 nM, or 1000 nM), followed by gargling a clearing solution for 60 seconds. Fluorescence measurements of the lesion and surrounding oral mucosa were taken before PARPi-FL application, after PARPi-FL application and after clearing. Blood pressure, oxygen levels, clinical chemistry and CBC were obtained before and after tracer administration.ResultsPARPi-FL was well-tolerated by all patients without any safety concerns. When analyzing the fluorescence signal, all malignant lesions showed a significant differential in contrast after administration of PARPi-FL, with the highest increase occurring at the highest dose level (1000 nM), where all patients had a tumor-to-margin fluorescence signal ratio of > 3. A clearing step was essential to increase signal specificity, as it clears unbound PARPi-FL trapped in normal anatomical structures. PARPi-FL tumor cell specificity was confirmed by ex vivo tabletop confocal microscopy. We have demonstrated that the fluorescence signal arose from the nuclei of tumor cells, endorsing our macroscopic findings.ConclusionsA PARPi-FL swish & spit solution is a rapid and non-invasive diagnostic tool that preferentially localizes fluorescent contrast to OSCC. This technique holds promise for the early detection of OSCC based on in vivo optical evaluation and targeted biopsy of suspicious lesions in the oral cavity.Translational RelevanceDespite their accessible location, oral cavity cancers are often diagnosed late, especially in low-resource areas where their incidence is typically high. The high prevalence of premalignant and benign oral lesions in these populations contributes to a number of issues that make early detection of oral cancer difficult: even in experienced hands, it can be difficult to differentiate cancer from premalignant or benign lesions during routine clinical examination; and biopsy-based histopathology, the current standard of care, is invasive, prone to sampling error, and requires geographic access to appropriate health care professionals, including a highly trained pathologist. While seemingly impenetrable economic and infrastructure barriers have confounded the early diagnosis of oral cancer for most of the world’s population, these could be circumvented by a simple, in vivo, non-invasive, cost-effective, point-of-care method of diagnosis. We are attempting to address this unmet clinical need by using topically applied PARPi-FL — a molecularly specific, fluorescent contrast-based approach — to detect oral cancer.FundingThis work was supported by National Institutes of Health grants P30 CA008748, R01 CA204441 (TR) and R43 CA228815 (CB and TR). Dr. Valero was sponsored by a grant from Fundación Alfonso Martín Escudero. The funding sources were not involved in study design, data collection and analysis, writing of the report, or the decision to submit this article for publication.Disclosure of Potential Conflicts of InterestC.B., S.K., S.P. and T.R. are shareholders of Summit Biomedical Imaging, LLC. S.K., S.P. and T.R. are co-inventors on PCT application WO2016164771. T.R. is co-inventor on PCT application WO2012074840. T.R. is a paid consultant for Theragnostics, Inc. All the other authors have no relevant conflict to declare. This arrangement has been reviewed and approved by Memorial Sloan Kettering Cancer Center in accordance with its conflict of interest policies.


2000 ◽  
Vol 355 (1402) ◽  
pp. 1361-1370 ◽  
Author(s):  
Peter Horton ◽  
Alexander V. Ruban ◽  
Mark Wentworth

Non–photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light–harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid ΔpH and the de–epoxidation state of the xanthophyll cycle. In order to understand the mechanism and regulation of NPQ we have adopted the approaches commonly used in the study of enzyme–catalysed reactions. Steady–state measurements suggest allosteric regulation of NPQ, involving control by the xanthophyll cycle carotenoids of a protonationdependent conformational change that transforms the PS II antenna from an unquenched to a quenched state. The features of this model were confirmed using isolated light–harvesting proteins. Analysis of the rate of induction of quenching both in vitro and in vivo indicated a bimolecular second–order reaction; it is suggested that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit. A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics.


2018 ◽  
Vol 10 (8) ◽  
pp. 1309 ◽  
Author(s):  
Peng-Wang Zhai ◽  
Emmanuel Boss ◽  
Bryan Franz ◽  
P. Werdell ◽  
Yongxiang Hu

We report the first radiative transfer model that is able to simulate phytoplankton fluorescence with both photochemical and non-photochemical quenching included. The fluorescence source term in the inelastic radiative transfer equation is proportional to both the quantum yield and scalar irradiance at excitation wavelengths. The photochemical and nonphotochemical quenching processes change the quantum yield based on the photosynthetic active radiation. A sensitivity study was performed to demonstrate the dependence of the fluorescence signal on chlorophyll a concentration, aerosol optical depths and solar zenith angles. This work enables us to better model the phytoplankton fluorescence, which can be used in the design of new space-based sensors that can provide sufficient sensitivity to detect the phytoplankton fluorescence signal. It could also lead to more accurate remote sensing algorithms for the study of phytoplankton physiology.


Sign in / Sign up

Export Citation Format

Share Document