scholarly journals Sulfated Polysaccharide From Undaria Pinnatifida Induces Apoptosis and Inhibits Proliferation, Migration, and Invasion in Ovarian Cancer via Suppressing the Hedgehog Signaling Pathway

2021 ◽  
Vol 8 ◽  
Author(s):  
Yi Yang ◽  
Qin Zhang ◽  
Yongping Xu ◽  
Gang Chen ◽  
Yukuan Qiu

Objective: To investigate the effects of sulfured polysaccharide from Undaria pinnatifida (SPUP) on the biological behaviors of ovarian cancer (OC) cells and its potential mechanism.Methods: Sulfated polysaccharide from Undaria pinnatifida (SPUP) was extracted and characterized through a combination of chemical analysis, IR spectra, UV-Vis, gas chromatography, and high-performance gel permeation chromatography. OC and human ovarian surface epithelial cells were used as working model in vitro for evaluation of SPUP’s therapeutic effects. A combination of CCK-8, Transwell, and flow cytometry assay was used to measure the proliferation, migration, invasion, and apoptosis of OC cells, respectively. In addition, the protein expression levels of cells were also measured by Western blot.Results: SPUP suppressed OC development from three different perspectives: 1) SPUP treatment significantly inhibited the proliferation of OC in a dosage-dependent manner (p < 0.05); 2) SPUP inhibited the migration and invasion of OC cells confirmed by scratch and Transwell experiments (p < 0.05); 3) SPUP induced apoptosis in OC cells and thus further inhibited the growth of OC cells evaluated using flow cytometry (p < 0.05). The underlying mechanism of the suppressing effects of SPUP might be related to the inhibition of the hedgehog (Hh) signaling pathway in OC cells after SPUP treatment. With additional suppression of the Hh signaling pathway, the anticancer effects of SPUP were enhanced (p < 0.05).Conclusion: Taken together, SPUP could inhibit the proliferation, migration, and invasion and induce apoptosis of OC cells by inhibiting the activation of the Hh signaling pathway, which proposes SPUP as a novel drug to treat OC clinically.

2021 ◽  
Vol 11 ◽  
Author(s):  
Fuyin Le ◽  
Lilan Yang ◽  
Yiwen Han ◽  
Yanying Zhong ◽  
Fuliang Zhan ◽  
...  

Chemoresistance is the primary reason for the poor prognosis of patients with ovarian cancer, and the search for a novel drug treatment or adjuvant chemotherapy drug is an urgent need. The tumor microenvironment plays key role in the incidence and development of tumors. As one of the most important components of the tumor microenvironment, M2 tumor-associated macrophages are closely related to tumor migration, invasion, immunosuppressive phenotype and drug resistance. Many studies have confirmed that triptolide (TPL), one of the principal components of Tripterygium wilfordii, possesses broad-spectrum anti-tumor activity. The aims of this study were to determine whether TPL could inhibit the migration and invasion of A2780/DDP cells in vitro and in vivo by inhibiting the polarization of M2 tumor-associated macrophages (TAMs); to explore the mechanism(s) underlying TPL effects; and to investigate the influence of TPL on murine intestinal symbiotic microbiota. In vitro results showed that M2 macrophage supernatant slightly promoted the proliferation, invasion, and migration of A2780/DDP cells, which was reversed by TPL in a dose-dependent manner. Animal experiments showed that TPL, particularly TPL + cisplatin (DDP), significantly reduced the tumor burden, prolonged the life span of mice by inhibiting M2 macrophage polarization, and downregulated the levels of CD31 and CD206 (CD31 is the vascular marker and CD206 is the macrophage marker), the mechanism of which may be related to the inhibition of the PI3K/Akt/NF-κB signaling pathway. High-throughput sequencing results of the intestinal microbiota in nude mice illustrated that Akkermansia and Clostridium were upregulated by DDP and TPL respective. We also found that Lactobacillus and Akkermansia were downregulated by DDP combined with TPL. Our results highlight the importance of M2 TAMs in Epithelial Ovarian Cancer (EOC) migration ability, invasiveness, and resistance to DDP. We also preliminarily explored the mechanism governing the reversal of the polarization of M2 macrophages by TPL.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Li-qian Zhang ◽  
Rong-wei Lv ◽  
Xiang-dong Qu ◽  
Xian-jun Chen ◽  
Hong-sheng Lu ◽  
...  

Aloesin is an active constituent of the herb aloe vera and plays a crucial role in anti-inflammatory activity, ultraviolet protection, and antibacterium. We investigated the role and possible mechanisms of aloesin in the cell growth and metastasis of ovarian cancer. It was found that aloesin inhibited cell viability and cell clonality in a dose-dependent manner. It arrests the cell cycle at the S-phase and induced apoptosis in SKOV3 cells. In an in vivo experiment, it was observed that aloesin inhibited tumor growth. Moreover, it inhibited migration and invasion of cancer in SKOV3 cells. Interestingly, members from the mitogen-activated protein kinase (MAPK) signaling family became less phosphorylated as the aloesin dose increased. This suggests that aloesin exerts its anticancer effect through the MAPK signaling pathway. Our data also highlights the possibility of using aloesin as a novel therapeutic drug for ovarian cancer treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhendan Zhao ◽  
Zhiling Wang ◽  
Pengling Wang ◽  
Shujie Liu ◽  
Yingwei Li ◽  
...  

Epithelial ovarian cancer (EOC) is the main pathological type of ovarian cancer. In this study, we found that ependymin-related 1 (EPDR1) was remarkably downregulated in EOC tissues, and low EPDR1 expression was associated with International Federation of Gynecology and Obstetrics (FIGO) stage, metastasis, and poor prognosis. We confirmed that EPDR1 overexpression dramatically suppressed EOC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, EPDR1 inhibited EOC tumorigenesis and progression, at least in part, through the repression of the PI3K (Phosphoinositide 3-kinase)/AKT (AKT Serine/Threonine Kinase 1) signaling pathway. Furthermore, the expression and function of EPDR1 were regulated by miR-429, as demonstrated by luciferase reporter assays and rescue experiments. In conclusion, our study validated that EPDR1, negatively regulated by miR-429, played an important role as a tumor-suppressor gene in EOC development via inhibition of the PI3K/AKT pathway. The miR-429/EPDR1 axis might provide novel therapeutic targets for individualized treatment of EOC patients in the future.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wenjing Hu ◽  
Min Li ◽  
Youguo Chen ◽  
Xinxian Gu

Abstract Background Ovarian cancer is the most lethal gynecologic malignancy worldwide. Olaparib, an inhibitor of poly (ADP-ribose) polymerase (PARP), is becoming widely used in ovarian cancer treatment. The overall survival of ovarian cancer has not been significantly changed over the past decades and ovarian cancer has become increasingly resistant to the Olaparib. Ubiquitin-conjugating enzyme E2S (UBE2S) has been proved to promote malignant behaviors in many cancers. However, the function of UBE2S in the development and Olaparib resistance of ovarian cancer are unclear. Materials and methods In this study, we detected the expression of UBE2S in normal fallopian tube (FT) and HGSOC tissues. A2780 and SKOV3 cells were stably transfected with PCMV-UBE2S, PCMV-UBE2S-C95S, UBE2S shRNAs, and negative controls. The CCK8 assay and clonogenic assay were conducted to analyze ovarian cancer proliferation and Olaparib resistance. The transwell assay was performed to determine the migration and invasion of ovarian cancer cells. The relative protein levels of the Wnt/β-catenin signaling pathway were tested using western blot. The ovarian cancer cells were treated with XAV-939 to investigate the role of Wnt/β-catenin signaling pathway in Olaparib resistance. Moreover, we repeated some above procedures in the xenograft model. Results The results demonstrated that UBE2S was highly upregulated in HGSOC and that high UBE2S expression was correlated with poor outcomes in HGSOC. UBE2S promoted ovarian cancer proliferation and drived the migration and invasion of ovarian cancer cells. UBE2S activated the Wnt/β-catenin signaling pathway in ovarian cancer resulting in Olaparib resistance in vitro and in vivo. Furthermore, UBE2S enhanced the proliferation and Olaparib resistance of ovarian cancer in its enzymatic activity dependent manner. Conclusions These data suggest a possible molecular mechanism of proliferation and metastasis of ovarian cancer and highlight the potential role of UBE2S as a therapeutic target in ovarian cancer.


2020 ◽  
Vol 19 (2) ◽  
pp. 233-238
Author(s):  
Ruchang Yin ◽  
Chunyan Zhang ◽  
Aizhi Gen ◽  
Yanxiao Li ◽  
Hailei Yang ◽  
...  

Purpose: To investigate the effect of propofol on the biological behavior of ovarian cancer SKOV3 cells, and the mechanism of action involved. Methods: SKOV3 cells cultured in vitro were randomly divided into control group, fat emulsion group, low-dose propofol group (LDPG, 25 μmol/L), medium-dose propofol group (MDPG) (50 μmol/L) and high-dose propofol group (HDPG) (100 μmol/L). Apoptosis was determined by flow cytometry, while Transwell assay was used to measure the migration and invasion abilities of the cells. The protein levels of ERK1/2, MMP-2, MMP-9 were assayed with Western blotting. Moreover, the cells were transfected with siERK, and the regulatory effect of propofol on ERK1/2-MMP-2/9 signaling pathway was determined. Results: Apoptosis in HDPG was significantly reduced, relative to MDPG, while migration and invasion were enhanced, relative to MDPG (p < 0.05). Moreover, MMP-2, ERK1/2, and MMP-9 proteins were significantly higher in MDPG and HDPG than in control, fat emulsion and LDPGs (p < 0.05), and were upregulated in HDPGs, relative to MDPG (p < 0.05). In contrast, propofol did not up-regulate these proteins in siRNA-treated cells. Conclusion: Propofol enhances the migration, proliferation, and invasive ability SKOV3 cells, and upregulates the expressions of MMP-2, ERK1/2, and MMP-9 in these cells, via a mechanism related to the activation of ERK1/2-MMP-2/9 signaling route. These properties provide novel leads for the development of new drugs for ovarian cancer Keywords: Propofol, ERK1/2-MMP-2/9 signal route, Ovarian cancer, Biological behavior


2020 ◽  
Author(s):  
Shujun Zhao ◽  
Suzhen Fan ◽  
Yanyu Shi ◽  
Hongyan Ren ◽  
Hanqing Hong ◽  
...  

Abstract Background: Propranolol has a significant anti-cancer effect on various cancers. The present study aimed to investigate the underlying mechanism behind the therapeutic effect of Propranolol on the ovarian cancer.Materials and methods: The effect of Propranolol on cell viability was examined by MTT analysis. Cellular apoptosis was evaluated by flow cytometry analysis. Autophagy was defined by autophagosome observed by confocal microscopy after infected with GFP-LC3 adenovirus. In addition, the expression of marker proteins involved in cell apoptosis, autophagy, and ROS/JNK signaling pathway were estimated by Western Blotting assay.Results: Propranolol significantly reduced the viability of human ovarian cancer cell lines SKOV-3 and A2780 in a dose- and time-dependent manner. Flow cytometry analysis revealed that Propranolol induced the cell cycle arrest at G2/M phase and resulted in apoptosis. Moreover, autophagy inhibitor 3-MA markedly enhanced the Propranolol-induced apoptosis. In addition, reactive oxygen species (ROS) was demonstrated dramatically increased after Propranolol treatment and Propranolol activated the phosphorylation of JNK. What is more, p38 inhibitor SB203580 and JNK inhibitor SP600125 attenuated the upregulated expression of LC3-II and cleaved-caspase-3 by the effect of Propranolol. ROS exclusive inhibitor antioxidant N-acetyl cysteine (NAC) weaken the phosphorylation of JNK proteins induced by Propranolol.Conclusions:In summary, our results suggested that Propranolol induced cell apoptosis and protective autophagy through the ROS/JNK signaling pathway in human ovarian cancer cells.


2021 ◽  
Author(s):  
zhaotao wang ◽  
yongping Li ◽  
minyi liu ◽  
danmin chen ◽  
yunxiang ji ◽  
...  

Abstract BackgroundGlioblastoma (GBM) is a tumor of the central nervous system carries an extremely poor prognosis. Unfortunately, it also is the most frequently encountered tumor in this region. These tumors arise from glioblastoma stem cells (GSCs), which are glioma cells that are known to possess high degrees of stemness. GBM invades through the process of EMT, which features loss of cell differentiation and polarity. Survivin is a type of apoptotic inhibitor that has been characterized in several malignancies such as glioma. Normal tissues rarely express survivin. On the other hand, 3-benzyl-5-((2-nitrophenoxy) methyl) dihydrofuran-2(3H)-one (3BDO) represents an autophagy inhibitor and activates the mTOR pathway. It has been reported that 3BDO shows anti-cancer activities in lung carcinoma. However, the effects of 3BDO on GBM reminds unknown. Therefore, the purpose of this study was to explore the role and molecular mechanisms that 3BDO mediates in GBM.MethodCCK-8 experiments and clone formation assay were performed to detect the cell proliferation. Transwell assay was conducted to examined cell migration and invasion. Western blotting and immunofluorescence staining was used to analyze protein expression levels. Xenograft mouse model was used to evaluate the effect of 3BDO in vivo.ResultsWe found that 3BDO inhibited U87 and U251 cell proliferation in a dose-dependent manner. Additonally, 3BDO decreased the sphere formation and stemness markers (sox2, nestin and CD133) in GSCs. 3BDO also inhibited migration, invasion and suppressed EMT markers (N-cadherin, vimentin and snail) in GBM cells. Moreover, we found that 3BDO downregulated survivin expression of survivin both in GBM cells (U87, U251) and GSCs. Furthermore, overexpression of survivin reduced the therapeutic effects of 3BDO on GBM cell EMT, invasion, migration and proliferation, as well as decreased stemness in GSCs. Finally, we demonstrated that 3BDO inhibited tumor growth in a tumor xenograft mouse model constructed using U87 cells. Similar to the in vitro findings, 3BDO diminished suvivin expression, stemness and levels of EMT makers in vivo.Conclusionsour results demonstrated that 3BDO repressed GBM via downregulating survivin-mediated stemness and EMT both in vitro and in vivo.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jin Lin ◽  
Ye Yu ◽  
Xuanwei Wang ◽  
Yini Ke ◽  
Chuanyin Sun ◽  
...  

Objective. Iguratimod, a novel disease-modifying anti-rheumatic drug for the treatment of rheumatoid arthritis, has been approved in China and Japan. Here, we aimed to find whether iguratimod can inhibit the aggressive behavior and promote apoptosis of rheumatoid fibroblast-like synoviocytes (RA-FLSs). Methods. The proliferation of RA-FLSs was assessed by 5-ethynyl-2′-deoxyuridine test and Cell Counting Kit-8. Migration and invasion were determined by the wound test and a transwell assay. Apoptosis was tested by flow cytometry. The mRNA expression of matrix metalloproteinases (MMPs) and proinflammatory cytokines in RA-FLSs were measured by quantitative PCR and ELISA. To gain insight into the molecular signaling mechanisms, we determined the effect of iguratimod on the activation of mitogen-activated protein kinases (MAPK) signaling pathways by the cellular thermal shift assay (CETSA) and western blot. Results. Iguratimod treatment significantly reduced the proliferation, migration, and invasive capacities of RA-FLSs in a dose-dependent manner in vitro. MMP-1, MMP-3, MMP-9, Interleukin-6 (IL-6), and monocyte chemoattractant protein-1 mRNA and protein levels were all decreased after treatment with iguratimod. Furthermore, tumor necrosis factor-alpha- (TNF-α-) induced expression of phosphorylated c-Jun N-terminal kinases (JNK) and P38 MAPK were inhibited by iguratimod. Additionally, iguratimod promoted the apoptosis of RA-FLSs. Most importantly, iguratimod was shown to directly interact with JNK and P38 protein by CETSA assay. Moreover, activating transcription factor 2 (ATF-2), a substrate of both JNK and P38, was suppressed by iguratimod. Conclusions. Our findings suggested that the therapeutic effects of iguratimod on RA might be, in part, due to targeting the aggressive behavior and apoptosis of RA-FLSs.


Author(s):  
Yanli Li ◽  
Yang Tian ◽  
Wei Zhong ◽  
Ning Wang ◽  
Yafeng Wang ◽  
...  

The tumor metastasis is the major hurdle for the treatment of advanced hepatocellular carcinoma (HCC), due in part to the lack of effective systemic treatments. DEPDC1, a novel oncoantigen upregulated in HCC, is thought to be a molecular-target for novel therapeutic drugs. Artemisia argyi is a traditional Chinese medicine with anti-inflammatory and anti-tumor activities. This study investigated the potential therapeutic benefits of Artemisia argyi essential oil (AAEO) in suppressing metastasis of HCC by targeting DEPDC1. Assessment of AAEO cytotoxicity was performed by MTT assay. Anti-metastatic effects of AAEO were investigated in vitro using wound healing and transwell assays. The HepG2 cells were transduced with lentiviral vector containing luciferase (Luc). A metastasis model of nude mice was established by tail vein injection of HepG2-Luc cells. The nude mice were treated with AAEO (57.5, 115, and 230 mg/kg) or sorafenib (40 mg/kg). Metastasis of HCC cells was monitored via in vivo bioluminescence imaging. After treatment for 21 days, tissues were collected for histological examination and immunohistochemistry analysis. Gene and protein levels were determined by real-time quantitative PCR and western blotting. The results revealed that AAEO significantly inhibits the migration and invasion in vitro in a concentration-dependent manner. In vivo assays further confirmed that AAEO markedly inhibits HCC metastasis into lung, brain, and femur tissues and exhibits low toxicity. Our results suggested that AAEO significantly downregulates the mRNA and protein expression of DEPDC1. Also, AAEO attenuated Wnt/β-catenin signaling through reduction of Wnt1 and β-catenin production. Moreover, AAEO prevented epithelial-mesenchymal transition (EMT) by downregulation of vimentin and upregulation of E-cadherin. Furthermore, we found that DEPDC1 promoted HCC migration and invasion via Wnt/β-catenin signaling pathway and EMT. These results demonstrate that AAEO effectively inhibits HCC metastasis via attenuating Wnt/β-catenin signaling and inhibiting EMT by suppressing DEPDC1 expression. Thus, AAEO likely acts as a novel inhibitor of the DEPDC1 dependent Wnt/β-catenin signaling pathway.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kewen Ma ◽  
Kuansong Wang ◽  
Yingjun Zhou ◽  
Nian Liu ◽  
Wei Guo ◽  
...  

Ovarian cancer is a common gynecologic aggressive neoplasm. The mortality of ovarian cancer is top among gynecologic malignancies due to the insidious onset, atypical early symptoms, and chemoresistance. Therefore, it is urgent to seek another promising treatment for ovarian cancer. Purified vitexin compound 1 (VB1) is a kind of neolignan from the seed of traditional Chinese herb vitex negundo that possessed diverse pharmacological effects. VB1 can exhibit anti-neoplastic activities against various cancers. However, the role of VB1 in ovarian cancer treatment has not been elaborated, and the mechanism is unknown. The aim of this study was to investigate the therapeutic effects of VB1 in ovarian cancer cells both in vitro and in vivo, along with the molecular mechanism of action. In vitro, VB-1 can effectively suppress the proliferation, induce apoptosis, and block cell cycle at G2/M phase with a concentration dependent manner in ovarian cancer cells. Western blot assay showed that VB1 induce apoptosis via upregulating expression of cleaved-caspase3 and block cell cycle at G2/M phase through upregulating expression of P21. Meanwhile, VB1 can effectively inhibit tumor growth in xenograft mouse model. Our research indicated that VB1 can significantly exert its anti-neoplastic effects and may represent a new class of agents in ovarian cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document