scholarly journals Microbiome, Immunosenescence, and Chronic Kidney Disease

2021 ◽  
Vol 8 ◽  
Author(s):  
Elisavet Stavropoulou ◽  
Konstantia Kantartzi ◽  
Christina Tsigalou ◽  
Konstantina Aftzoglou ◽  
Chrysa Voidarou ◽  
...  

The gut microbiome is known as an important predictive tool for perceiving characteristic shifts in disease states. Multiple renal diseases and pathologies seem to be associated with gut dysbiosis which directly affects host homeostasis. The gastrointestinal-kidney dialogue confers interesting information about the pathogenesis of multiple kidney diseases. Moreover, aging is followed by specific shifts in the human microbiome, and gradual elimination of physiological functions predisposes the microbiome to inflammaging, sarcopenia, and disease. Aging is characterized by a microbiota with an abundance of disease-associated pathobionts. Multiple factors such as the immune system, environment, medication, diet, and genetic endowment are involved in determining the age of the microbiome in health and disease. Our present review promotes recently acquired knowledge and is expected to inspire researchers to advance studies and investigations on the involved pathways of the gut microbiota and kidney axis.

2017 ◽  
Vol 200 (3) ◽  
Author(s):  
Celia Méndez-García ◽  
Coral Barbas ◽  
Manuel Ferrer ◽  
David Rojo

ABSTRACT In 1680, Antonie van Leeuwenhoek noted compositional differences in his oral and fecal microbiota, pioneering the study of the diversity of the human microbiome. From Leeuwenhoek's time to successful modern attempts at changing the gut microbial landscape to cure disease, there has been an exponential increase in the recognition of our resident microbes as part of ourselves. Thus, the human host and microbiome have evolved in parallel to configure a balanced system in which microbes survive in homeostasis with our innate and acquired immune systems, unless disease occurs. A growing number of studies have demonstrated a correlation between the presence/absence of microbial taxa and some of their functional molecules (i.e., genes, proteins, and metabolites) with health and disease states. Nevertheless, misleading experimental design on human subjects and the cost and lack of standardized animal models pose challenges to answering the question of whether changes in microbiome composition are cause or consequence of a certain biological state. In this review, we evaluate the state of the art of methodologies that enable the study of the gut microbiome, encouraging a change in broadly used analytic strategies by choosing effector molecules (proteins and metabolites) in combination with coding nucleic acids. We further explore microbial and effector microbial product imbalances that relate to disease and health.


2020 ◽  
Vol 21 (3) ◽  
pp. 1009
Author(s):  
Tian-Yu Lin ◽  
Yu-Hsiang Hsu

Acute kidney injury (AKI) causes over 1 million deaths worldwide every year. AKI is now recognized as a major risk factor in the development and progression of chronic kidney disease (CKD). Diabetes is the main cause of CKD as well. Renal fibrosis and inflammation are hallmarks in kidney diseases. Various cytokines contribute to the progression of renal diseases; thus, many drugs that specifically block cytokine function are designed for disease amelioration. Numerous studies showed IL-20 functions as a pro-inflammatory mediator to regulate cytokine expression in several inflammation-mediated diseases. In this review, we will outline the effects of pro-inflammatory cytokines in the pathogenesis of AKI and CKD. We also discuss the role of IL-20 in kidney diseases and provide a potential therapeutic approach of IL-20 blockade for treating renal diseases.


2021 ◽  
Vol 7 ◽  
Author(s):  
Elisavet Stavropoulou ◽  
Konstantia Kantartzi ◽  
Christina Tsigalou ◽  
Theoharis Konstantinidis ◽  
Gioulia Romanidou ◽  
...  

The recent new developments in technology with culture-independent techniques including genome sequencing methodologies shed light on the identification of microbiota bacterial species and their role in health and disease. Microbiome is actually reported as an important predictive tool for evaluating characteristic shifts in case of disease. Our present review states the development of different renal diseases and pathologies linked to the intestinal dysbiosis, which impacts on host homeostasis. The gastrointestinal–kidney dialogue provides intriguing features in the pathogenesis of several renal diseases. Without any doubt, investigation of this interconnection consists one of the most cutting-edge areas of research with potential implications on our health.


2019 ◽  
Author(s):  
Bruce A Rosa ◽  
Kathie Mihindukulasuriya ◽  
Kymberlie Hallsworth-Pepin ◽  
Aye Wollam ◽  
John Martin ◽  
...  

AbstractWhole genome bacterial sequences are required to better understand microbial functions, niches-pecific bacterial metabolism, and disease states. Although genomic sequences are available for many of the human-associated bacteria from commonly tested body habitats (e.g. stool), as few as 13% of bacterial-derived reads from other sites such as the skin map to known bacterial genomes. To facilitate a better characterization of metagenomic shotgun reads from under-represented body sites, we collected over 10,000 bacterial isolates originating from 14 human body habitats, identified novel taxonomic groups based on full length 16S rRNA sequences, clustered the sequences to ensure that no individual taxonomic group was over-selected for sequencing, prioritized bacteria from under-represented body sites (such as skin, respiratory and urinary tract), and sequenced and assembled genomes for 665 new bacterial strains. Here we show that addition of these genomes improved read mapping rates of HMP metagenomic samples by nearly 30% for the previously under-represented phylum Fusobacteria, and 27.5% of the novel genomes generated here had high representation in at least one of the tested HMP samples, compared to 12.5% of the sequences in the public databases, indicating an enrichment of useful novel genomic sequences resulting from the prioritization procedure. As our understanding of the human microbiome continues to improve and to enter the realm of therapy developments, targeted approaches such as this to improve genomic databases will increase in importance from both an academic and clinical perspective.ImportanceThe human microbiome plays a critically important role in health and disease, but current understanding of the mechanisms underlying the interactions between the varying microbiome and the different host environments is lacking. Having access to a database of fully sequenced bacterial genomes provides invaluable insights into microbial functions, but currently sequenced genomes for the human microbiome have largely come from a limited number of body sites (primarily stool), while other sites such as the skin, respiratory tract and urinary tracts are under-represented, resulting in as little as 13% of bacterial-derived reads mapping to known bacterial genomes. Here, we sequenced and assembled 665 new bacterial genomes, prioritized from a larger database to select under-represented body sites and bacterial taxa in the existing databases. As a result, we substantially improve mapping rates for samples from the Human Microbiome Project and provide an important contribution to human bacterial genomic databases for future studies.


2021 ◽  
pp. 1-17
Author(s):  
Hai Ning Wee ◽  
Jian-Jun Liu ◽  
Jianhong Ching ◽  
Jean-Paul Kovalik ◽  
Su Chi Lim

<b><i>Background:</i></b> The kynurenine pathway (KP) is the major catabolic pathway for tryptophan degradation. The KP plays an important role as the sole de novo nicotinamide adenine dinucleotide (NAD<sup>+</sup>) biosynthetic pathway in normal human physiology and functions as a counter-regulatory mechanism to mitigate immune responses during inflammation. Although the KP has been implicated in a variety of disorders including Huntington’s disease, seizures, cardiovascular disease, and osteoporosis, its role in renal diseases is seldom discussed. <b><i>Summary:</i></b> This review summarizes the roles of the KP and its metabolites in acute kidney injury (AKI) and chronic kidney disease (CKD) based on current literature evidence. Metabolomics studies demonstrated that the KP metabolites were significantly altered in patients and animal models with AKI or CKD. The diagnostic and prognostic values of the KP metabolites in AKI and CKD were highlighted in cross-sectional and longitudinal human observational studies. The biological impact of the KP on the pathophysiology of AKI and CKD has been studied in experimental models of different etiologies. In particular, the activation of the KP was found to confer protection in animal models of glomerulonephritis, and its immunomodulatory mechanism may involve the regulation of T cell subsets such as Th17 and regulatory T cells. Manipulation of the KP to increase NAD<sup>+</sup> production or diversion toward specific KP metabolites was also found to be beneficial in animal models of AKI. <b><i>Key Messages:</i></b> KP metabolites are reported to be dysregulated in human observational and animal experimental studies of AKI and CKD. In AKI, the magnitude and direction of changes in the KP depend on the etiology of the damage. In CKD, KP metabolites are altered with the onset and progression of CKD all the way to advanced stages of the disease, including uremia and its related vascular complications. The activation of the KP and diversion to specific sub-branches are currently being explored as therapeutic strategies in these diseases, especially with regards to the immunomodulatory effects of certain KP metabolites. Further elucidation of the KP may hold promise for the development of biomarkers and targeted therapies for these kidney diseases.


2018 ◽  
Vol 49 (3) ◽  
pp. 998-1009 ◽  
Author(s):  
Niki Prakoura ◽  
Panagiotis Kavvadas ◽  
Christos E.  Chadjichristos

Chronic kidney disease is an incurable to date pathology with a continuously growing incidence that contributes to the increase of the number of deaths worldwide. With currently no efficient prognostic or therapeutic options being available, the only possibility for treatment of end-stage renal disease is renal replacement therapy through dialysis or transplantation. Understanding the molecular mechanisms participating in the progression of renal diseases and uncovering the pathways implicated will permit the identification of novel and more efficient targets of therapy. Connexin43 was recently identified as a novel player in the development of chronic kidney disease. It was found de novo expressed and/or differentially localized in various renal cell populations during progression of renal disease, indicating an abnormal connexin signaling, both in patients and animal models. Subsequent in vivo studies demonstrated that connexin43 is involved in mediating inflammatory and fibrotic processes contributing to renal damage. Genetic, pharmaco-genetic or peptide-based inhibition of connexin43 in animal models and cell culture systems was successful in preventing the progression of the pathology and preserving the cell phenotypes. This review will summarize the recent advances on connexin43 in the field of kidney diseases and discuss the potential of future connexin43-based therapies against chronic kidney disease.


2019 ◽  
Vol 12 (5) ◽  
pp. 611-619 ◽  
Author(s):  
Onur Yilmaz ◽  
Baris Afsar ◽  
Alberto Ortiz ◽  
Mehmet Kanbay

AbstractThe endothelium is the largest organ in the body and recent studies have shown that the endothelial glycocalyx (eGCX) plays a major role in health and disease states. The integrity of eGCX is vital for homoeostasis and disruption of its structure and function plays a major role in several pathologic conditions. An increased understanding of the numerous pathophysiological roles of eGCX may lead to the development of potential surrogate markers for endothelial injury or novel therapeutic targets. This review provides a state-of-the-art update on the structure and function of the eGCX, emphasizing the current understanding of interorgan crosstalk between the eGCX and other organs that might also contribute to the pathogenesis of kidney diseases.


2019 ◽  
Vol 4 (2) ◽  
pp. 32-37
Author(s):  
Strizhakov LA ◽  
Babanov SA ◽  
Garipova RV ◽  
Arkhipov EV ◽  
Lebedeva MV ◽  
...  

This review focuses on kidney diseases resulting from exposure to chemical agents in production environment; special attention is given to diseases' classification, prevalence rate, specificity of clinical representation and diagnosis. The frequency of occupational renal diseases is underestimated due to poor manifestation of the symptoms and the influence of environmental factors; thus this problem requires further investigation.


2016 ◽  
Author(s):  
Aria S. Hahn ◽  
Tomer Altman ◽  
Kishori M. Konwar ◽  
Niels W. Hanson ◽  
Dongjae Kim ◽  
...  

AbstractAdvances in high-throughput sequencing are reshaping how we perceive microbial communities inhabiting the human body, with implications for therapeutic interventions. Several large-scale datasets derived from hundreds of human microbiome samples sourced from multiple studies are now publicly available. However, idiosyncratic data processing methods between studies introduce systematic differences that confound comparative analyses. To overcome these challenges, we developed GUTCYC, a compendium of environmental pathway genome databases constructed from 418 assembled human microbiome datasets using METAPATHWAYS, enabling reproducible functional metagenomic annotation. We also generated metabolic network reconstructions for each metagenome using the PATHWAY TOOLS software, empowering researchers and clinicians interested in visualizing and interpreting metabolic pathways encoded by the human gut microbiome. For the first time, GUTCYC provides consistent annotations and metabolic pathway predictions, making possible comparative community analyses between health and disease states in inflammatory bowel disease, Crohn’s disease, and type 2 diabetes. GUTCYC data products are searchable online, or may be downloaded and explored locally using METAPATHWAYS and PATHWAY TOOLS.


2017 ◽  
Author(s):  
Geoffrey D Hannigan ◽  
Melissa B Duhaime ◽  
Danai Koutra ◽  
Patrick D Schloss

AbstractViruses and bacteria are critical components of the human microbiome and play important roles in health and disease. Most previous work has relied on studying bacteria and viruses independently, thereby reducing them to two separate communities. Such approaches are unable to capture how these microbial communities interact, such as through processes that maintain community robustness or allow phage-host populations to co-evolve. We implemented a network-based analytical approach to describe phage-bacteria network diversity throughout the human body. We built these community networks using a machine learning algorithm to predict which phages could infect which bacteria in a given microbiome. Our algorithm was applied to paired viral and bacterial metagenomic sequence sets from three previously published human cohorts. We organized the predicted interactions into networks that allowed us to evaluate phage-bacteria connectedness across the human body. We observed evidence that gut and skin network structures were person-specific and not conserved among cohabitating family members. High-fat diets appeared to be associated with less connected networks. Network structure differed between skin sites, with those exposed to the external environment being less connected and likely more susceptible to network degradation by microbial extinction events. This study quantified and contrasted the diversity of virome-microbiome networks across the human body and illustrated how environmental factors may influence phage-bacteria interactive dynamics. This work provides a baseline for future studies to better understand system perturbations, such as disease states, through ecological networks.Author SummaryThe human microbiome, the collection of microbial communities that colonize the human body, is a crucial component to health and disease. Two major components of the human microbiome are the bacterial and viral communities. These communities have primarily been studied separately using metrics of community composition and diversity. These approaches have failed to capture the complex dynamics of interacting bacteria and phage communities, which frequently share genetic information and work together to maintain ecosystem homestatsis (e.g. kill-the-winner dynamics). Removal of bacteria or phage can disrupt or even collapse those ecosystems. Relationship-based network approaches allow us to capture this interaction information. Using this network-based approach with three independent human cohorts, we were able to present an initial understanding of how phage-bacteria networks differ throughout the human body, so as to provide a baseline for future studies of how and why microbiome networks differ in disease states.


Sign in / Sign up

Export Citation Format

Share Document