scholarly journals Detection of ESBL/AmpC-Producing and Fosfomycin-Resistant Escherichia coli From Different Sources in Poultry Production in Southern Brazil

2021 ◽  
Vol 11 ◽  
Author(s):  
Luís Eduardo de Souza Gazal ◽  
Leonardo Pinto Medeiros ◽  
Miriam Dibo ◽  
Erick Kenji Nishio ◽  
Vanessa Lumi Koga ◽  
...  

This study discussed the use of antimicrobials in the commercial chicken production system and the possible factors influencing the presence of Extended-spectrum β-lactamase (ESBL)/AmpC producers strains in the broiler production chain. The aim of this study was to perform longitudinal monitoring of ESBL-producing and fosfomycin-resistant Escherichia coli from poultry farms in southern Brazil (Paraná and Rio Grande do Sul states) and determine the possible critical points that may be reservoirs for these strains. Samples of poultry litter, cloacal swabs, poultry feed, water, and beetles (Alphitobius sp.) were collected during three distinct samplings. Phenotypic and genotypic tests were performed for characterization of antimicrobial resistant strains. A total of 117 strains were isolated and 78 (66%) were positive for ESBL production. The poultry litter presented ESBL positive strains in all three sampled periods, whereas the cloacal swab presented positive strains only from the second period. The poultry litter represents a significant risk factor mainly at the beginning poultry production (odds ratio 6.43, 95% confidence interval 1–41.21, p < 0.05). All beetles presented ESBL positive strains. The predominant gene was blaCTX–M group 2, which occurred in approximately 55% of the ESBL-producing E. coli. The cit gene was found in approximately 13% of the ESBL-producing E. coli as AmpC type determinants. A total of 19 out of 26 fosfomycin-resistant strains showed the fosA3 gene, all of which produced ESBL. The correlation between fosA3 and blaCTX–M group 1 (blaCTX–M55) genes was significant among ESBL-producing E. coli isolated from Paraná (OR 3.66, 95% CI 1.9–9.68) and these genetic determinants can be transmitted by conjugation to broiler chicken microbiota strains. Our data revealed that poultry litter and beetles were critical points during poultry production and the presence of fosfomycin-resistant strains indicate the possibility of risks associated with the use of this antimicrobial during production. Furthermore, the genetic determinants encoding CTX-M and fosA3 enzymes can be transferred to E. coli strains from broiler chicken microbiota, thereby creating a risk to public health.

2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Daniela Ceccarelli ◽  
Alieda van Essen-Zandbergen ◽  
Bregtje Smid ◽  
Kees T. Veldman ◽  
Gert Jan Boender ◽  
...  

ABSTRACT Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (pAmpC) are enzymes able to hydrolyze a large variety of β-lactam antibiotics, including third-generation cephalosporins and monobactams. Broilers and broiler meat products can be highly contaminated with ESBL- and pAmpC-producing Escherichia coli strains, also known as extended-spectrum cephalosporin (ESC)-resistant E. coli strains, and can be a source for human infections. As few data on interventions to reduce the presence of ESC-resistant E. coli in broilers are available, we used transmission experiments to examine the role of competitive exclusion (CE) on reducing transmission and excretion in broilers. A broiler model to study the transmission of ESC-resistant E. coli was set up. Day-old chickens were challenged with an ESBL-producing E. coli strain isolated from healthy broilers in the Netherlands. Challenged and not challenged chicks were housed together in pairs or in groups, and ESBL-producing E. coli transmission was monitored via selective culturing of cloacal swab specimens. We observed a statistically significant reduction in both the transmission and excretion of ESBL-producing E. coli in chicks treated with the probiotic flora before E. coli challenge compared to the transmission and excretion in untreated controls. In conclusion, our results support the use of competitive exclusion as an intervention strategy to control ESC-resistant E. coli in the field. IMPORTANCE Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases are a primary cause of resistance to β-lactam antibiotics among members of the family Enterobacteriaceae in humans, animals, and the environment. Food-producing animals are not exempt from this, with a high prevalence being seen in broilers, and there is evidence pointing to a possible foodborne source for human contamination. We investigated the effect of administration of a commercial probiotic product as an intervention to reduce the amount of ESBL-producing Escherichia coli in broilers. Our results showed a substantial reduction in the level of colonization of broiler intestines by ESBL-producing E. coli after administration of commercial probiotic product. The protective effect provided by these probiotics could be implemented on a larger scale in poultry production. Reductions in the levels of ESBL-producing Enterobacteriaceae in the food chain would considerably benefit public health.


2017 ◽  
Vol 37 (11) ◽  
pp. 1253-1260 ◽  
Author(s):  
Caroline Pissetti ◽  
Gabriela Orosco Werlang ◽  
Jalusa Deon Kich ◽  
Marisa Cardoso

ABSTRACT: The increasing antimicrobial resistance observed worldwide in bacteria isolated from human and animals is a matter of extreme concern and has led to the monitoring of antimicrobial resistance in pathogenic and commensal bacteria. The aim of this study was to evaluate the antimicrobial resistance profile of Escherichia coli isolated from pig carcasses and to assess the occurrence of relevant resistance genes. A total of 319 E. coli isolates were tested for antimicrobial susceptibility against different antimicrobial agents. Moreover, the presence of extended-spectrum β-lactamase (ESBL) and inducible ampC-β-lactamase producers was investigated. Eighteen multi-resistant strains were chosen for resistance gene detection and PFGE characterization. The study showed that resistance to antimicrobials is widespread in E. coli isolated from pig carcasses, since 86.2% of the strains were resistant to at least one antimicrobial and 71.5% displayed multi-resistance profiles. No ampC-producing isolates were detected and only one ESBL-producing E. coli was identified. Genes strA (n=15), floR (n=14), aac(3)IVa (n=13), tetB (n=13), sul2 (n=12), tetA (n=11), aph(3)Ia (n=8) and sul3 (n=5) were detected by PCR. PFGE analysis of these multi-resistant E. coli strains showed less than 80% similarity among them. We conclude that antimicrobial multi-resistant E. coli strains are common on pig carcasses and present highly diverse genotypes and resistance phenotypes and genotypes.


1996 ◽  
Vol 40 (3) ◽  
pp. 710-714 ◽  
Author(s):  
Y Kumagai ◽  
J I Kato ◽  
K Hoshino ◽  
T Akasaka ◽  
K Sato ◽  
...  

Escherichia coli quinolone-resistant strains with mutations of the parC gene, which codes for a subunit of topoisomerase IV, were isolated from a quinolone-resistant gyrA mutant of DNA gyrase. Quinolone-resistant parC mutants were also identified among the quinolone-resistant clinical strains. The parC mutants became susceptible to quinolones by introduction of a parC+ plasmid. Introduction of the multicopy plasmids carrying the quinolone-resistant parC mutant gene resulted in an increase in MICs of quinolones for the parC+ and quinolone-resistant gyrA strain. Nucleotide sequences of the quinolone-resistant parC mutant genes were determined, and missense mutations at position Gly-78, Ser-80, or Glu-84, corresponding to those in the quinolone-resistance-determining region of DNA gyrase, were identified. These results indicate that topoisomerase IV is a target of quinolones in E. coli and suggest that the susceptibility of E. coli cells to quinolones is determined by sensitivity of the targets, DNA gyrase and topoisomerase IV.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 811
Author(s):  
Md. Akil Hossain ◽  
Hae-Chul Park ◽  
Sung-Won Park ◽  
Seung-Chun Park ◽  
Min-Goo Seo ◽  
...  

Pathogenic Escherichia coli (E. coli)-associated infections are becoming difficult to treat because of the rapid emergence of antibiotic-resistant strains. Novel approaches are required to prevent the progression of resistance and to extend the lifespan of existing antibiotics. This study was designed to improve the effectiveness of traditional antibiotics against E. coli using a combination of the gallic acid (GA), hamamelitannin, epicatechin gallate, epigallocatechin, and epicatechin. The fractional inhibitory concentration index (FICI) of each of the phenolic compound-antibiotic combinations against E. coli was ascertained. Considering the clinical significance and FICI, two combinations (hamamelitannin-erythromycin and GA-ampicillin) were evaluated for their impact on certain virulence factors of E. coli. Finally, the effects of hamamelitannin and GA on Rattus norvegicus (IEC-6) cell viability were investigated. The FICIs of the antibacterial combinations against E. coli were 0.281–1.008. The GA-ampicillin and hamamelitannin-erythromycin combinations more effectively prohibited the growth, biofilm viability, and swim and swarm motilities of E. coli than individual antibiotics. The concentration of hamamelitannin and GA required to reduce viability by 50% (IC50) in IEC-6 cells was 988.54 μM and 564.55 μM, correspondingly. GA-ampicillin and hamamelitannin-erythromycin may be potent combinations and promising candidates for eradicating pathogenic E. coli in humans and animals.


2019 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract Background Antimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries like Zambia. This study was undertaken to determine the resistance profiles of Escherichia coli ( E. coli ) and Salmonella isolated from dressed broiler chickens purchased from open markets and supermarkets in Zambia.Results A total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates was done using Analytical Profile Index (API 20E) (Biomerieux ® ) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 different antibiotics and multiplex PCR was used to determine the presence of three target genes encoding for resistance: tetA, Sul1 and CTXM. AST results were entered and analyzed in WHONET 2018 software. A total of 189 E. coli and five Salmonella isolates were identified. Among the E. coli isolates, Tetracycline recorded the highest resistance of 79.4%, followed by Ampicillin 51.9%, Trimethoprim/Sulfamethoxazole 49.7%, Nalidixic Acid 24.3%, Chloramphenicol 16.4%, Cefotaxime 16.4%, Ciprofloxacin 10.1%, Colistin 7.4%, Amoxicillin/Clavulanic acid 6.9%, and Imipenem 1.1%. Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the isolates possessed at least one of the targeted resistance genes.Conclusion This study has demonstrated the presence of AMR E. coli and Salmonella on raw broiler chickens from both open markets and supermarkets. Such resistance is of public health concern and measures need to be put in place to regulate the use of these antimicrobials in poultry production.


2016 ◽  
Vol 72 (3) ◽  
pp. 485-494 ◽  
Author(s):  
D. Ljubojević ◽  
N. Puvača ◽  
M. Pelić ◽  
D. Todorović ◽  
M. Pajić ◽  
...  

2019 ◽  
Vol 366 (8) ◽  
Author(s):  
Sophie Van Hamelsveld ◽  
Muyiwa E Adewale ◽  
Brigitta Kurenbach ◽  
William Godsoe ◽  
Jon S Harding ◽  
...  

Abstract Baseline studies are needed to identify environmental reservoirs of non-pathogenic but associating microbiota or pathogenic bacteria that are resistant to antibiotics and to inform safe use of freshwater ecosystems in urban and agricultural settings. Mesophilic bacteria and Escherichia coli were quantified and isolated from water and sediments of two rivers, one in an urban and one in an agricultural area near Christchurch, New Zealand. Resistance of E. coli to one or more of nine different antibiotics was determined. Additionally, selected strains were tested for conjugative transfer of resistances. Despite having similar concentrations of mesophilic bacteria and E. coli, the rivers differed in numbers of antibiotic-resistant E. coli isolates. Fully antibiotic-susceptible and -resistant strains coexist in the two freshwater ecosystems. This study was the first phase of antibiotic resistance profiling in an urban setting and an intensifying dairy agroecosystem. Antibiotic-resistant E. coli may pose different ingestion and contact risks than do susceptible E. coli. This difference cannot be seen in population counts alone. This is an important finding for human health assessments of freshwater systems, particularly where recreational uses occur downstream.


2019 ◽  
Vol 40 (1) ◽  
pp. 163 ◽  
Author(s):  
Leandro Parussolo ◽  
Ricardo Antônio Pilegi Sfaciotte ◽  
Karine Andrezza Dalmina ◽  
Fernanda Danielle Melo ◽  
Ubirajara Maciel Costa ◽  
...  

The serrano artisanal cheese is a typical product from South region of Brazil, which is produced by skilled cheesemakers using raw milk. The contamination of this food by Escherichia coli has a great impact on public health, since it could threat the consumers’ health. The study evaluated the presence of virulence genes, antimicrobial susceptibility profiles and bofilm-production ability of Escherichia coli isolates obtained from raw milk and artisanal cheese produced in Southern Brazil. A total of 117 isolates of E. coli were characterized by multiplex PCR to detect the following virulence genes: eae for enteropatogenic E. coli (EPEC), lt and st for enterotoxigenic E. coli (ETEC), stx for shiga toxin-producing E. coli (STEC), stx and eae for enterohemorrhagic E. coli (EHEC), ipaH for enteroinvasive E. coli (EIEC) and aggR for enteroaggregative E. coli (EAEC). In addition, antimicrobial susceptibility profile to 22 antimicrobial agents was also performed by disk diffusion method, and we searched for extended-spectrum beta-lactamases (ESBL) and/or carbapenemase- producing isolates. Isolates that were positive for ESBL and carbapenemase were further investigated for the presence of the genes: blaTEM, blaSHV, blaOXA, blaCTX-M, for ESBL and blaOXA-48 for carbapenemase. Further, isolates had their ability to form biofilms investigated by the red Congo agar method. Virulence genes of E. coli were identified in 21.37% of the tested isolates, which were classified as EPEC (the most prevalent pathotype) and ETEC or EAEC. Ten (8.55%) of the total studied E. coli isolates revealed a multidrug-resistant profile, since they were resistant to three or more antimicrobial classes; whereas four isolates (3.42%) were classified as ESBL-producers and showed the presence of blaTEM gene. None of the isolates exhibited carbapenemase activity nor did they carry carbapenemase genes. From the total of E. coli isolates, 79 (67.52%) were considered potential biofilm producers. These results address a serious public health issue, since artisanal cheeses pose a risk to consumers’ health, since may be sources of dissemination of diarrheogenic E. coli, that can cause from subclinical to severe and fatal infections in children and adults, and also emphasize the need to improve adaptations/adjustments in the manufacturing processes of these products.


2019 ◽  
Vol 74 (8) ◽  
pp. 2209-2213 ◽  
Author(s):  
Rongmin Zhang ◽  
Jiyun Li ◽  
Yang Wang ◽  
Jianzhong Shen ◽  
Zhangqi Shen ◽  
...  

Abstract Objectives Characterization of non-Escherichia coli NDM-carrying Enterobacteriaceae in the poultry production environment. Methods A total of 36 NDM-positive Enterobacteriaceae (22 Klebsiella pneumoniae, 13 Enterobacter cloacae and 1 Salmonella enterica) were isolated from a chicken farm and WGS was conducted using Illumina Hiseq2500. The genomic characterization of the isolates acquired through WGS analysis included the genomic context-flanking blaNDM genes, MLST, the antibiotic resistance genes (ARGs) and replicon types of plasmids. WGS information for another 73 K. pneumoniae isolates from different sources was retrieved from GenBank and then combined with isolates in this study for comparative genomic and phylogenetic analysis. Results Three types of genetic environment carrying blaNDM were identified in 36 non-E. coli Enterobacteriaceae isolates. Sequence comparison analysis indicated these genetic environments were completely identical to our previous findings. WGS further revealed three major types of plasmids (IncFIB, IncX3 and IncFII) from these isolates and the phylogenetic analysis suggested several K. pneumoniae isolates with ST11, ST37 and ST147 from the commercial chicken farm that were closely related to isolates of human origin. Conclusions The blaNDM-harbouring genetic contexts were identified not only in E. coli, but also in K. pneumoniae, E. cloacae and S. enterica, which may indicate that blaNDM has been widely disseminated to non-E. coli Enterobacteriaceae species in animal farms. The close relationship of K. pneumoniae isolates from different origins suggests they could serve as a key vehicle for the transfer of ARGs between humans and food animal production environments.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 267 ◽  
Author(s):  
Le Phuong Nguyen ◽  
Naina Adren Pinto ◽  
Thao Nguyen Vu ◽  
Hyunsook Lee ◽  
Young Lag Cho ◽  
...  

This study investigates GT-1 (also known as LCB10-0200), a novel-siderophore cephalosporin, inhibited multidrug-resistant (MDR) Gram-negative pathogen, via a Trojan horse strategy exploiting iron-uptake systems. We investigated GT-1 activity and the role of siderophore uptake systems, and the combination of GT-1 and a non-β-lactam β-lactamase inhibitor (BLI) of diazabicyclooctane, GT-055, (also referred to as LCB18-055) against molecularly characterised resistant Escherichia coli, Klebsiella pneumoniae and Acinetobacter spp. isolates. GT-1 and GT-1/GT-055 were tested in vitro against comparators among three different characterised panel strain sets. Bacterial resistome and siderophore uptake systems were characterised to elucidate the genetic basis for GT-1 minimum inhibitory concentrations (MICs). GT-1 exhibited in vitro activity (≤2 μg/mL MICs) against many MDR isolates, including extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing E. coli and K. pneumoniae and oxacillinase (OXA)-producing Acinetobacter spp. GT-1 also inhibited strains with mutated siderophore transporters and porins. Although BLI GT-055 exhibited intrinsic activity (MIC 2–8 μg/mL) against most E. coli and K. pneumoniae isolates, GT-055 enhanced the activity of GT-1 against many GT-1–resistant strains. Compared with CAZ-AVI, GT-1/GT-055 exhibited lower MICs against E. coli and K. pneumoniae isolates. GT-1 demonstrated potent in vitro activity against clinical panel strains of E. coli, K. pneumoniae and Acinetobacter spp. GT-055 enhanced the in vitro activity of GT-1 against many GT-1–resistant strains.


Sign in / Sign up

Export Citation Format

Share Document