scholarly journals Role of Virally Encoded Circular RNAs in the Pathogenicity of Human Oncogenic Viruses

2021 ◽  
Vol 12 ◽  
Author(s):  
Janardhan Avilala ◽  
David Becnel ◽  
Ramsy Abdelghani ◽  
Asuka Nanbo ◽  
Jacob Kahn ◽  
...  

Human oncogenic viruses are a group of important pathogens that etiologically contribute to at least 12% of total cancer cases in the world. As an emerging class of non-linear regulatory RNA molecules, circular RNAs (circRNAs) have gained increasing attention as a crucial player in the regulation of signaling pathways involved in viral infection and oncogenesis. With the assistance of current circRNA enrichment and detection technologies, numerous novel virally-encoded circRNAs (vcircRNAs) have been identified in the human oncogenic viruses, initiating an exciting new era of vcircRNA research. In this review, we discuss the current understanding of the roles of vcircRNAs in the respective viral infection cycles and in virus-associated pathogenesis.

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4240
Author(s):  
Thomas Meyer ◽  
Michael Sand ◽  
Lutz Schmitz ◽  
Eggert Stockfleth

Keratinocyte carcinomas (KC) include basal cell carcinomas (BCC) and cutaneous squamous cell carcinomas (cSCC) and represents the most common cancer in Europe and North America. Both entities are characterized by a very high mutational burden, mainly UV signature mutations. Predominately mutated genes in BCC belong to the sonic hedgehog pathway, whereas, in cSCC, TP53, CDKN2A, NOTCH1/2 and others are most frequently mutated. In addition, the dysregulation of factors associated with epithelial to mesenchymal transition (EMT) was shown in invasive cSCC. The expression of factors associated with tumorigenesis can be controlled in several ways and include non-coding RNA molecules, such as micro RNAs (miRNA) long noncoding RNAs (lncRNA) and circular RNAs (circRNA). To update findings on circRNA in KC, we reviewed 13 papers published since 2016, identified in a PubMed search. In both BCC and cSCC, numerous circRNAs were identified that were differently expressed compared to healthy skin. Some of them were shown to target miRNAs that are also dysregulated in KC. Moreover, some studies confirmed the biological functions of individual circRNAs involved in cancer development. Thus, circRNAs may be used as biomarkers of disease and disease progression and represent potential targets of new therapeutic approaches for KC.


2021 ◽  
Vol 291 ◽  
pp. 198205
Author(s):  
He Xie ◽  
Honggang Sun ◽  
Rongrong Mu ◽  
Shilin Li ◽  
Yujia Li ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 877
Author(s):  
David Becnel ◽  
Ramsy Abdelghani ◽  
Asuka Nanbo ◽  
Janardhan Avilala ◽  
Jacob Kahn ◽  
...  

Human oncogenic viruses account for at least 12% of total cancer cases worldwide. Epstein–Barr virus (EBV) is the first identified human oncogenic virus and it alone causes ~200,000 cancer cases and ~1.8% of total cancer-related death annually. Over the past 40 years, increasing lines of evidence have supported a causal link between EBV infection and a subgroup of lung cancers (LCs). In this article, we review the current understanding of the EBV-LC association and the etiological role of EBV in lung carcinogenesis. We also discuss the clinical impact of the knowledge gained from previous research, challenges, and future directions in this field. Given the high clinical relevance of EBV-LC association, there is an urgent need for further investigation on this topic.


Author(s):  
Sailaja Bhogireddy ◽  
Satendra K. Mangrauthia ◽  
Rakesh Kumar ◽  
Arun K. Pandey ◽  
Sadhana Singh ◽  
...  

AbstractBeyond the most crucial roles of RNA molecules as a messenger, ribosomal, and transfer RNAs, the regulatory role of many non-coding RNAs (ncRNAs) in plant biology has been recognized. ncRNAs act as riboregulators by recognizing specific nucleic acid targets through homologous sequence interactions to regulate plant growth, development, and stress responses. Regulatory ncRNAs, ranging from small to long ncRNAs (lncRNAs), exert their control over a vast array of biological processes. Based on the mode of biogenesis and their function, ncRNAs evolved into different forms that include microRNAs (miRNAs), small interfering RNAs (siRNAs), miRNA variants (isomiRs), lncRNAs, circular RNAs (circRNAs), and derived ncRNAs. This article explains the different classes of ncRNAs and their role in plant development and stress responses. Furthermore, the applications of regulatory ncRNAs in crop improvement, targeting agriculturally important traits, have been discussed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shaheerah Khan ◽  
Atimukta Jha ◽  
Amaresh C. Panda ◽  
Anshuman Dixit

Recent advances in sequencing technologies and the discovery of non-coding RNAs (ncRNAs) have provided new insights in the molecular pathogenesis of cancers. Several studies have implicated the role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and recently discovered circular RNAs (circRNAs) in tumorigenesis and metastasis. Unlike linear RNAs, circRNAs are highly stable and closed-loop RNA molecules. It has been established that circRNAs regulate gene expression by controlling the functions of miRNAs and RNA-binding protein (RBP) or by translating into proteins. The circRNA–miRNA–mRNA regulatory axis is associated with human diseases, such as cancers, Alzheimer’s disease, and diabetes. In this study, we explored the interaction among circRNAs, miRNAs, and their target genes in various cancers using state-of-the-art bioinformatics tools. We identified differentially expressed circRNAs, miRNAs, and mRNAs on multiple cancers from publicly available data. Furthermore, we identified many crucial drivers and tumor suppressor genes in the circRNA–miRNA–mRNA regulatory axis in various cancers. Together, this study data provide a deeper understanding of the circRNA–miRNA–mRNA regulatory mechanisms in cancers.


Mutagenesis ◽  
2019 ◽  
Vol 35 (3) ◽  
pp. 243-260 ◽  
Author(s):  
Antonio Francavilla ◽  
Szimonetta Turoczi ◽  
Sonia Tarallo ◽  
Pavel Vodicka ◽  
Barbara Pardini ◽  
...  

Abstract The circulating human transcriptome, which includes both coding and non-coding RNA (ncRNA) molecules, represents a rich source of potential biomarkers for colorectal cancer (CRC) that has only recently been explored. In particular, the release of RNA-containing extracellular vesicles (EVs), in a multitude of different in vitro cell systems and in a variety of body fluids, has attracted wide interest. The role of RNA species in EVs is still not fully understood, but their capacity to act as a form of distant communication between cells and their higher abundance in association with cancer demonstrated their relevance. In this review, we report the evidence from both in vitro and human studies on microRNAs (miRNAs) and other ncRNA profiles analysed in EVs in relation to CRC as diagnostic, prognostic and predictive markers. The studies so far highlighted that, in exosomes, the most studied category of EVs, several miRNAs are able to accurately discriminate CRC cases from controls as well as to describe the progression of the disease and its prognosis. Most of the time, the in vitro findings support the miRNA profiles detected in human exosomes. The expression profiles measured in exosomes and other EVs differ and, interestingly, there is a variability of expression also among different subsets of exosomes according to their proteic profile. On the other hand, evidence is still limited for what concerns exosome miRNAs as early diagnostic and predictive markers of treatment. Several other ncRNAs that are carried by exosomes, mostly long ncRNAs and circular RNAs, seem also to be dysregulated in CRC. Besides various technical challenges, such as the standardisation of EVs isolation methods and the optimisation of methodologies to characterise the whole spectrum of RNA molecules in exosomes, further studies are needed in order to elucidate their relevance as CRC markers.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Zhicheng Yao ◽  
Ruiyun Xu ◽  
Lin Yuan ◽  
Mingxing Xu ◽  
Haiyun Zhuang ◽  
...  

AbstractCircular RNAs (circRNAs) have been increasingly demonstrated to function as novel promising therapeutic RNA molecules for diverse human diseases, including cancer. Although the important role of circRNAs has been well documented in HCC, the complex mechanisms of circRNAs in HCC need to be elucidated. Here, a novel circRNA circ_0001955 was identified from three GSE datasets (GSE7852, GSE94508, and GSE97322) as a differentially expressed circRNA between HCC and normal samples. We revealed that circ_0001955, TRAF6 and MAPK11 levels were increased, while miR-516a-5p levels were decreased in HCC tumor tissues compared to adjacent normal tissues. Knockdown of circ_0001955 repressed HCC tumor growth in vitro and in vivo, while overexpression of circ_0001955 exhibited the opposite effect. Circ_0001955 was identified as a sponge for miR-145-5p and miR-516a-5p, and TRAF6 and MAPK11 were demonstrated to be two target genes of miR-516a-5p. In conclusion, circ_0001955 facilitated HCC tumorigenesis by sponging miR-516a-5p to release TRAF6 and MAPK11 expression.


2021 ◽  
Vol 22 (9) ◽  
pp. 4636
Author(s):  
Kexin Jiao ◽  
Laurence J. Walsh ◽  
Sašo Ivanovski ◽  
Pingping Han

Periodontitis is a chronic complex inflammatory disease associated with a destructive host immune response to microbial dysbiosis, leading to irreversible loss of tooth-supporting tissues. Regeneration of functional periodontal soft (periodontal ligament and gingiva) and hard tissue components (cementum and alveolar bone) to replace lost tissues is the ultimate goal of periodontal treatment, but clinically predictable treatments are lacking. Similarly, the identification of biomarkers that can be used to accurately diagnose periodontitis activity is lacking. A relatively novel category of molecules found in oral tissue, circular RNAs (circRNAs) are single-stranded endogenous, long, non-coding RNA molecules, with covalently circular-closed structures without a 5’ cap and a 3’ tail via non-classic backsplicing. Emerging research indicates that circRNAs are tissue and disease-specific expressed and have crucial regulatory functions in various diseases. CircRNAs can function as microRNA or RNA binding sites or can regulate mRNA. In this review, we explore the biogenesis and function of circRNAs in the context of the emerging role of circRNAs in periodontitis pathogenesis and the differentiation of periodontal cells. CircMAP3K11, circCDK8, circCDR1as, circ_0062491, and circ_0095812 are associated with pathological periodontitis tissues. Furthermore, circRNAs are expressed in periodontal cells in a cell-specific manner. They can function as microRNA sponges and can form circRNA–miRNA–mRNA networks during osteogenic differentiation for periodontal-tissue (or dental pulp)-derived progenitor cells.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xue Min ◽  
Dong-liang Liu ◽  
Xing-dong Xiong

Circular RNAs (circRNAs) represent a novel class of widespread and diverse endogenous RNA molecules. This unusual class of RNA species is generated by a back-splicing event of exons or introns, resulting in a covalently closed circRNA molecule. Accumulating evidence indicates that circRNA plays an important role in the biological functions of a network of competing endogenous RNA (ceRNA). CircRNAs can competitively bind to miRNAs and abolish the suppressive effect of miRNAs on target RNAs, thus regulating gene expression at the posttranscriptional level. The role of circRNAs as ceRNAs in the pathogenesis of cardiovascular and cerebrovascular diseases (CVDs) has been recently reported and highlighted. Understanding the underlying molecular mechanism could aid the discovery of therapeutic targets or strategies against CVDs. Here, we review the progress in studying the role of circRNAs as ceRNAs in CVDs, with emphasis on the molecular mechanism, and discuss future directions and possible clinical implications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Liu ◽  
He Zhu ◽  
Li Fu ◽  
Tianmin Xu

Circular RNAs (circRNAs) are non-coding RNA molecules, and these are differentially expressed in various diseases, including cancer, suggesting that circRNAs can regulate certain diseases. CircRNAs can act as miRNAs sponges, RNA-binding protein (RBP) sponges, and translation regulators, and they can become an important part of the regulation of gene expression. Furthermore, because of their biomedical features in body fluids, such as high abundance, conservation, and stability, circRNAs are seen as potential biomarkers for various cancers. Cervical cancer (CC) is one of the main causes of cancer-related death in women, and there have been a large number of studies that analyze circRNAs as a new object to be evaluated in CC. Therefore, this review, by understanding the role of circRNAs in CC, may create innovative strategies in the future clinical diagnosis, treatment, and prognosis of CC and promote the development of personalized and highly accurate cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document