scholarly journals Prevalence of tet(X4) in Escherichia coli From Duck Farms in Southeast China

2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Yu ◽  
Chao-Yue Cui ◽  
Xu Kuang ◽  
Chong Chen ◽  
Min-Ge Wang ◽  
...  

ObjectivesCarbapenems, colistin, and tigecycline are critically important antibiotics in clinics. After the global appearance of blaNDM and mcr mediating the resistance to carbapenems and colistin, respectively, tigecycline becomes the last-resort drug against severe human infections caused by multidrug-resistant bacteria. Recently, a mobile tigecycline resistance gene tet(X4) has been identified in Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii that causes high resistance to tigecycline and other tetracyclines. In this study, the prevalence of tet(X4) in E. coli isolates from duck and goose farms in Southeast China was identified and characterized.MethodsFeces, soil, sewage, and dust samples were collected from duck and goose farms along with the southeast coast provinces of China. Antimicrobial susceptibility testing and polymerase chain reaction screening were performed to investigate the phenotype and genotype of tigecycline resistance. Conjugation, S1 pulsed-field gel electrophoresis (PFGE), and whole-genome sequencing were used to determine the transferability, genetic location, and the genomic characteristics of tet(X4).ResultsIn total, 1,716 samples were collected, and 16 isolates (0.9%) recovered from Guangdong, Shandong, and Jiangsu were positive for tet(X4) gene with tigecycline minimum inhibitory concentrations ≥16 mg/L. Notably, among these tet(X4)-positive E. coil isolates, seven of them were from the environment samples (soil and sewage). PFGE and multilocus sequence typing demonstrated that ST3997 was the most prevalent sequence type (eight isolates, 50%) in Jiangsu province. By conjugation assays, 11 isolates were able to transfer tet(X4) plasmid to E. coli C600 recipient, and these plasmids belonged to IncHI1 and IncX1 detected by sequence analysis. tet(X4) was found adjacent to an insertion sequence ISCR2 downstream and a catD gene upstream for all isolates. In addition, multiple-drug resistance to tigecycline, chlortetracycline, ampicillin, florfenicol, ciprofloxacin, gentamicin, trimethoprim/sulfamethoxazole, and fosfomycin was profiled in most of the tet(X4)-positive isolates.ConclusionThe identification of tet(X4) harboring E. coli strains in duck farms and their surrounding environment enlarges our knowledge of the variety and prevalence of tigecycline resistance. The prevalence of tet(X4) raises concern for the use of tetracyclines in animal farming, and the tet(X4) gene should be listed as primary gene for resistance surveillance.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


2013 ◽  
Vol 62 (11) ◽  
pp. 1728-1734 ◽  
Author(s):  
Dongguo Wang ◽  
Enping Hu ◽  
Jiayu Chen ◽  
Xiulin Tao ◽  
Katelyn Gutierrez ◽  
...  

A total of 69 strains of Escherichia coli from patients in the Taizhou Municipal Hospital, China, were isolated, and 11 strains were identified that were resistant to bacitracin, chloramphenicol, tetracycline and erythromycin. These strains were PCR positive for at least two out of three genes, ybjG, dacC and mdfA, by gene mapping with conventional PCR detection. Conjugation experiments demonstrated that these genes existed in plasmids that conferred resistance. Novel ybjG and dacC variants were isolated from E. coli strains EC2163 and EC2347, which were obtained from the sputum of intensive care unit patients. Genetic mapping showed that the genes were located on 8200 kb plasmid regions flanked by EcoRI restriction sites. Three distinct genetic structures were identified among the 11 PCR-positive strains of E. coli, and two contained the novel ybjG and dacC variants. The putative amino acid differences in the ybjG and dacC gene variants were characterized. These results provide evidence for novel variants of ybjG and dacC, and suggest that multiple drug resistance in hospital strains of E. coli depends on the synergistic function of ybjG, dacC and mdfA within three distinct genetic structures in conjugative plasmids.


2020 ◽  
Vol 17 (3) ◽  
pp. 0710
Author(s):  
Md Fazlul Karim Khan ◽  
Shah Samiur Rashid

A significant increase in the incidence of non-O157 verotoxigenic Escherichia coli (VTEC) infections have become a serious health issues, and this situation is worsening due to the dissemination of plasmid mediated multidrug-resistant microorganisms worldwide. This study aims to investigate the presence of plasmid-mediated verotoxin gene in non-O157 E. coli. Standard microbiological techniques identified a total of 137 E. coli isolates. The plasmid was detected by Perfectprep Plasmid Mini preparation kit. These isolates were subjected to disk diffusion assay, and plasmid curing with ethidium bromide treatment. The plasmid containing isolates were subjected to a polymerase chain reaction (PCR) for investigating the presence of plasmid mediated verotoxin gene (VT1 and VT2) in non-O157 E. coli. Among the 137 E. coli isolates, 49 isolates were non-O157 E. coli while 29 (59.1%) isolates were verotoxin producing non-O157 serotypes and 26 non-O157 VTEC isolates possessed plasmids. Certain isolates harboured single sized plasmid while others had multiple plasmids with different size varied from 1.8kb to 7.6kb. A plasmid containing all (100%) the isolates was multidrug-resistant. Eight isolates changed their susceptibility patterns while three isolates were found to lose plasmid after post plasmid curing treatment and the rest of the isolates (15) remained constant. Different PCR sets characterized 3 plasmid-mediated verotoxins producing non-O157 E. coli. This current study demonstrated the occurrence of plasmid mediated verotoxin gene in non-O157 E. coli. To the best of our knowledge, this is the first report in the global literature on plasmid-mediated verotoxin gene in non-O157 E. coli. Timely diagnosis and surveillance of VTEC infections should prioritize to stop or slow down the virulence gene for dissemination by plasmid-mediated gene transfer amongst the same bacteria or other species.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Akihisa Hata ◽  
Noboru Fujitani ◽  
Fumiko Ono ◽  
Yasuhiro Yoshikawa

AbstractThere is a lack of an established antimicrobial resistance (AMR) surveillance system in animal welfare centers. Therefore, the AMR prevalence in shelter dogs is rarely known. Herein, we conducted a survey in animal shelters in Chiba and Kanagawa prefectures, in the Kanto Region, Japan, to ascertain the AMR status of Escherichia coli  (E. coli) prevalent in shelter dogs. E. coli was detected in the fecal samples of all 61 and 77 shelter dogs tested in Chiba and Kanagawa, respectively. The AMR was tested against 20 antibiotics. E. coli isolates derived from 16.4% and 26.0% of samples from Chiba and Kanagawa exhibited resistance to at least one antibiotic, respectively. E. coli in samples from Chiba and Kanagawa prefectures were commonly resistant to ampicillin, piperacillin, streptomycin, kanamycin, tetracycline, and nalidixic acid; that from the Kanagawa Prefecture to cefazolin, cefotaxime, aztreonam, ciprofloxacin, and levofloxacin and that from Chiba Prefecture to chloramphenicol and imipenem. Multidrug-resistant bacteria were detected in 18 dogs from both regions; β-lactamase genes (blaTEM, blaDHA-1, blaCTX-M-9 group CTX-M-14), quinolone-resistance protein genes (qnrB and qnrS), and mutations in quinolone-resistance-determining regions (gyrA and parC) were detected. These results could partially represent the AMR data in shelter dogs in the Kanto Region of Japan.


Author(s):  
Nahla Omer Eltai ◽  
Hadi M. Yassine ◽  
Sara H. Al-Hadidi ◽  
Tahra ElObied ◽  
Asmaa A. Al Thani ◽  
...  

The dissemination of antimicrobial resistance (AMR) bacteria has been associated with the inappropriate use of antibiotics in both humans and animals and with the consumption of food contaminated with resistant bacteria. In particular, the use of antibiotics as prophylactic and growth promotion purposes in food-producing animals has rendered many of the antibiotics ineffective. The increased global prevalence of AMR poses a significant threat to the safety of the world’s food supply. Objectives: This study aims at determining the prevalence of antibiotic-resistant Escherichia coli (E. coli) isolated from local and imported retail chicken meat in Qatar. Methodology: A total of 270 whole chicken carcasses were obtained from three different hypermarket stores in Qatar. A total of 216 E. coli were isolated and subjected to antibiotic susceptibility testing against 18 relevant antibiotics using disc diffusion and micro- dilution methods. Furthermore, extended-spectrum β-lactamase (ESBL) production was determined via a double-disc synergetic test. Isolates harboring colistin resistance were confirmed using multiplex-PCR and DNA sequencing. Results: Nearly 89% (192/216) of the isolates were resistant to at least one antibiotics. In general, isolates showed relatively higher resistance to sulfamethoxazole (62%), tetracycline (59.7%), ampicillin and trimethoprim (52.3%), ciprofloxacin (47.7%), cephalothin, and colistin (31.9%). On the other hand, less resistance was recorded against amoxicillin/clavulanic acid (6%), ceftriaxone (5.1%), nitrofurantoin (4.2%) and piperacillin/tazobactam (4.2%), cefepime (2.3%), meropenem (1.4%), ertapenem (0.9%), and amikacin (0.9%). Nine isolates (4.2%) were ESBL producers. Furthermore, 63.4% were multidrug-resistant (MDR). The percentage of MDR, ESBL producers, and colistin-resistant isolates was significantly higher among local isolates compared to imported chicken samples. Conclusion: We reported a remarkably high percentage of the antibiotic-resistant E. coli in chicken meat sold at retail in Qatar. The high percentage of MDR and colistin isolates is troublesome to the food safety of raw chicken meat and the potential of antibiotic resistance spread to public health. Our findings support the need for the implementation of one health approach to address the spread of antimicrobial resistance and the need for a collaborative solution.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Neha Giri ◽  
Anchal Lodhi ◽  
Devendra Singh Bisht ◽  
Suvarna Bhoj ◽  
Deepak Kumar Arya

Researchers have encountered new challenges with the discovery of multiple drug resistance in microbes. Currently, multidrug resistant bacteria are considered a major public health concern and an emerging global epidemic. Presence of Escherichia coli in water is used as a faecal pollution measure. In this study E. coli isolates were collected from 20 sample collection sites at Lake Nainital. 20 E. coli isolates, 1 from each sample collection sites, were examined for their antibiotic response patterns against a panel of widely used 15 antibiotics. The result of this study showed 100% resistance to Penicillin G followed by Erythromycin (80%). All isolates (100%) were found susceptible for Gentamycin. The susceptibilities for Chloramphenicol and Co-trimoxazaole were found next to Gentamycin as 90 and 85% respectively. Multiple antibiotic resistance (MAR) index was also determined. 0.73 MAR index was observed as highest in 1 isolate. 13 out of 20 isolates had more than 0.2 MAR indices. The result reveals the origin of E. coli isolates from an area of high antibiotics use.


Author(s):  
Folorunso O. Fasina ◽  
Dauda G. Bwala ◽  
Evelyn Madoroba

Escherichia coli is usually a benign commensal of the gut microflora. However, when E. coli acquires virulence genes it can multiply rapidly and cause disease through colonisation of the intestinal mucosa. Escherichia coli can become a significant pathogen in young pigs. We report an investigation of fatal colisepticaemia in weanling pigs from emerging farms where piglets and weaners were diarrhoeic and the mortality rate ranged between 15% and 70% in each litter. Faecal and tissue samples were processed for histopathology, bacteriology and molecular biology (multiplex and monoplex polymerase chain reaction) and we recovered enteroaggregative multidrug-resistant E. coli producing EAST-1 enterotoxin. An association between poor housing conditions and the observed cases was established and future management programmes were recommended to reduce the impact of such pathogens. Enteroaggregative E. coli is becoming a major problem in the pig industry. It therefore becomes necessary to establish the full impact of E. coli on the South African pig industry and to determine the geographic extent of the problem.


2016 ◽  
Vol 60 (7) ◽  
pp. 4324-4332 ◽  
Author(s):  
Paulo Durão ◽  
Daniela Gülereşi ◽  
João Proença ◽  
Isabel Gordo

ABSTRACTThe evolution of multiple-antibiotic-resistant bacteria is an increasing global problem. Even though mutations causing resistance usually incur a fitness cost in the absence of antibiotics, the magnitude of such costs varies across environments and genomic backgrounds. We studied how the combination of mutations that confer resistance to rifampin (Rifr) and streptomycin (Strr) affects the fitness ofEscherichia coliwhen it interacts with cells from the immune system, i.e., macrophages (Mϕs). We found that 13 RifrStrrdoubly resistant genotypes, of the 16 tested, show a survival advantage inside Mϕs, indicating that double resistance can be highly beneficial in this environment. Our results suggest that there are multiple paths to acquire multiple-drug resistance in this context, i.e., if a clone carrying Rifrallele H526 or S531 acquires a second mutation conferring Strr, the resulting double mutant has a high probability of showing increased survival inside Mϕs. On the other hand, we found two cases of sign epistasis between mutations, leading to a significant decrease in bacterial survival. Remarkably, infection of Mϕs with one of these combinations, K88R+H526Y, resulted in an altered pattern of gene expression in the infected Mϕs. This indicates that the fitness effects of resistance may depend on the pattern of gene expression of infected host cells. Notwithstanding the benefits of resistance found inside Mϕs, the RifrStrrmutants have massive fitness costs when the bacteria divide outside Mϕs, indicating that the maintenance of double resistance may depend on the time spent within and outside phagocytic cells.


2021 ◽  
Vol 72 (3) ◽  
pp. 3147
Author(s):  
F PEHLIVANOGLU

Livestock is an important reservoir of Shiga toxin-producing Escherichia coli and enterohemorrhagic E. coli (STEC/EHEC) strains and acts as a significant source of transmission to humans. In addition to the virulence of STEC/EHEC isolates, antibiotic resistance is also an escalating problem in these bacteria and increases the risk to public health. Therefore, the present study aimed to explore E. coli O157:H7 serotype and STEC/EHEC virulence genes in AmpC- and extended-spectrum beta-lactamase (ESBL)-producing E. coli isolates from cattle, chicken and sheep. A total of 61 confirmed AmpC- or ESBL-producing E. coli isolates were screened for the virulence genes (stx1, stx2, eae, ehxA, espP, katP and saa) and E. coli O157 (rfbO157) and H7 (fliCH7) genes by polymerase chain reaction (PCR). None of the ESBL-producing E. coli was positive for these genes, but six multidrug-resistant AmpC-producing E. coli were positive for the fliCH7 gene only. When considering the function of the H7 flagellar antigen of E. coli, it may be concluded that the development of ESBL/AmpC beta-lactamase production in the E. coli isolates with H7 flagella, which reside in the chicken intestine, may be potentially important for public health regarding both virulence and antimicrobial resistance.


2020 ◽  
Author(s):  
Dan Wu ◽  
Yijun Ding ◽  
Jinjing Zhang ◽  
Kaihu Yao ◽  
Wei Gao ◽  
...  

Abstract Background Escherichia coli (E.coli) rank one of the most common pathogens that can cause neonatal infections. The emergence of antibiotic-resistant bacteria is a major cause of treatment failure in newborn with infection. The purpose of this study was to describe the antibiotic resistance and multidrug-resistance of E.coli isolated from neonates with infection.Methods The antimicrobial susceptibility testing of the E. coli strains to selected antibiotics was assessed with the E-test technique on the Mueller-Hinton agar. The antimicrobials tests were included ceftazidime, cefuroxime, cefatriaxone, amoxicillin, amoxicillin-clavulanic acid, cefoperazone - sulbactam, meropenem, gentamicin, ciprofloxacin and sulfonamides. The minimal inhibitory concerntration (MIC) values of the antimicrobial agents selected for this study was determined by an agar dilution technique on Mueller-Hinton agar according to the Clinical and Laboratory Standards Institute recommendations. Results A total of 100 E. coli strains was isolated from phlegm (n = 78), blood (n = 10), cerebrospinal fluid (n = 5), and umbilical discharge (n = 7) of neonates hospitalized at Beijing Children’s Hospital. The highest resistance rate of E.coli was found in amoxicillin at 85%, followed by cefuroxime 65%, and cefatriaxone 60%, respectively. 6% and 5% of all isolates were resistant to amoxicillin/clavulanic acid and cefoperazone -sulbactam merely. The resistance rates to ceftazidime, gentamicin, ciprofloxacin and sulfonamides were 31%, 20%, 33%, 47%, respectively. All the isolates were susceptible to meropenem. Multidrug resistance was defined in E.coli as resistance to at least three antibiotic families. About 26% (26/100) of all the E.coli isolates were multidrug-resistant. The detection rate of ESBL-Producing E. coli was 55%. The rate in E. coli isolates from phlegm was higher than aseptic humoral. The difference was statistically significant (P < 0.05). It is worth noting that the majority of the isolates were also resistant to non-β-lactam antimicrobial agents, but the resistant rates were significantly lower than extended-spectrum β-lactamases.Conclusions: Multi-drug-resistant E.coli has become a thorny problem in clinical treatment. It is necessary to monitor E. coli resistance.


Sign in / Sign up

Export Citation Format

Share Document