scholarly journals A Review of Using Mathematical Modeling to Improve Our Understanding of Bacteriophage, Bacteria, and Eukaryotic Interactions

2021 ◽  
Vol 12 ◽  
Author(s):  
Kathryn M. Styles ◽  
Aidan T. Brown ◽  
Antonia P. Sagona

Phage therapy, the therapeutic usage of viruses to treat bacterial infections, has many theoretical benefits in the ‘post antibiotic era.’ Nevertheless, there are currently no approved mainstream phage therapies. One reason for this is a lack of understanding of the complex interactions between bacteriophage, bacteria and eukaryotic hosts. These three-component interactions are complex, with non-linear or synergistic relationships, anatomical barriers and genetic or phenotypic heterogeneity all leading to disparity between performance and efficacy in in vivo versus in vitro environments. Realistic computer or mathematical models of these complex environments are a potential route to improve the predictive power of in vitro studies for the in vivo environment, and to streamline lab work. Here, we introduce and review the current status of mathematical modeling and highlight that data on genetic heterogeneity and mutational stochasticity, time delays and population densities could be critical in the development of realistic phage therapy models in the future. With this in mind, we aim to inform and encourage the collaboration and sharing of knowledge and expertise between microbiologists and theoretical modelers, synergising skills and smoothing the road to regulatory approval and widespread use of phage therapy.

2010 ◽  
Vol 235 (4) ◽  
pp. 411-423 ◽  
Author(s):  
Katarzyna A Rejniak ◽  
Lisa J McCawley

In its simplest description, a tumor is comprised of an expanding population of transformed cells supported by a surrounding microenvironment termed the tumor stroma. The tumor microcroenvironment has a very complex composition, including multiple types of stromal cells, a dense network of various extracellular matrix (ECM) fibers interpenetrated by the interstitial fluid and gradients of several chemical species that either are dissolved in the fluid or are bound to the ECM structure. In order to study experimentally such complex interactions between multiple players, cancer is dissected and considered at different scales of complexity, such as protein interactions, biochemical pathways, cellular functions or whole organism studies. However, the integration of information acquired from these studies into a common description is as difficult as the disease itself. Computational models of cancer can provide cancer researchers with invaluable tools that are capable of integrating the complexity into organizing principles as well as suggesting testable hypotheses. We will focus in this Minireview on mathematical models in which the whole cell is a main modeling unit. We will present a current stage of such cell-focused mathematical modeling incorporating different stromal components and their interactions with growing tumors, and discuss what modeling approaches can be undertaken to complement the in vivo and in vitro experimentation.


2021 ◽  
Author(s):  
Feng Chen ◽  
Xingjun Cheng ◽  
Jianbo Li ◽  
Xiefang Yuan ◽  
Xiuhua Huang ◽  
...  

With the fast emergence of serious antibiotic resistance and the lagged discovery of novel antibacterial drugs, phage therapy for pathogenic bacterial infections has acquired great attention in the clinics. However, development of therapeutic phages also faces tough challenges, such as laborious screening and time to generate effective phage drugs since each phage may only lyse a narrow scope of bacterial strains. Identifying highly effective phages with broad host ranges is crucial for improving phage therapy. Here, we isolated and characterized several lytic phages from various environments specific for Pseudomonas aeruginosa by testing their growth, invasion, host ranges, and potential for killing targeted bacteria. Importantly, we identified several therapeutic phages (HX1, PPY9, and TH15) with broad host ranges to lyse laboratory strains and clinical isolates of P. aeruginosa with multi-drug resistance (MDR) both in vitro and in mouse models. In addition, we analyzed critical genetic traits related to the high-level broad host coverages by genome sequencing and subsequent computational analysis against known phages. Collectively, our findings establish that these novel phages may have potential for further development as therapeutic options for patients who fail to respond to conventional treatments. IMPORTANCE Novel lytic phages isolated from various environmental settings were systematically characterized for their critical genetic traits, morphology structures, host ranges against laboratory strains and clinical multi-drug resistant (MDR) Pseudomonas aeruginosa, and antibacterial capacity both in vitro and in mouse models. First, we characterized the genetic traits and compared with other existing phages. Furthermore, we utilized acute pneumonia induced by laboratorial strain PAO1, and W19, an MDR clinical isolate and chronic pneumonia by agar beads laden with FDR1, a mucoid phenotype strain isolated from the sputum of a cystic fibrosis (CF) patient. Consequently, we found that these phages not only suppress bacteria in vitro but also significantly reduce the infection symptom and disease progression in vivo, including lowered bug burdens, inflammatory responses and lung injury in mice, suggesting that they may be further developed as therapeutic agents against MDR P. aeruginosa.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S60-S60
Author(s):  
Shayla Hesse ◽  
Natalia Malachowa ◽  
Adeline Porter ◽  
Brett Freedman ◽  
Scott Kobayashi ◽  
...  

Abstract Background Bacteriophage (phage) therapy is being considered as a treatment option for patients with multi-drug-resistant bacterial infections. However, there is a dearth of controlled clinical data to support therapeutic phage efficacy. As a first step toward addressing this deficiency, we tested the ability of two well-characterized phages, alone and in combination, to kill carbapenem-resistant Klebsiella pneumoniae (ST258) in blood in vitro and rescue mice from lethal ST258 infection. Methods Wild-type C57BL/6J mice were infected with a lethal inoculum of ST258 by intra-peritoneal (IP) injection followed 1 hour later by IP administration of lytic phage P1, P2, or P1+P2 at a multiplicity of infection (MOI) estimated at 1. Survival of each group of mice was tracked for 10 days. In separate experiments, mice were sacrificed at 1 hour, 24 hours, and 48 hours post-phage treatment. Mouse blood and tissues were collected at each timepoint for enumeration of bacteria and phage, screening for phage resistance, and histopathology. Results ST258 survival in mouse blood in vitro was significantly less after 1 hour of incubation with P1 or P1+P2 (MOI 1) compared with the control group (no phage). Consistent with the in vitro data, none of the mice (0/15) in the control group (no phage) survived to 10 days post-infection, whereas 12/15, 14/15, and 15/15 mice survived in the P2, P1, and P1+P2-treated groups, respectively (P < 0.0001). Conclusion Prompt, systemic administration of lytic bacteriophages rescued mice from lethal ST258 infection. These data support the potential of phage therapy to effectively treat infections caused by ST258. It will be important to assess whether, for other phage-bacteria combinations, in vitro lysis in blood correlates with in vivo treatment efficacy and therefore may have predictive utility. Disclosures All Authors: No reported Disclosures.


2020 ◽  
Vol 11 ◽  
Author(s):  
Kaixiang Jia ◽  
Nuo Yang ◽  
Xiuwen Zhang ◽  
Ruopeng Cai ◽  
Yang Zhang ◽  
...  

Citrobacter freundii refers to a fish pathogen extensively reported to be able to cause injury and high mortality. Phage therapy is considered a process to alternatively control bacterial infections and contaminations. In the present study, the isolation of a virulent bacteriophage IME-JL8 isolated from sewage was presented, and such bacteriophage was characterized to be able to infect Citrobacter freundii specifically. Phage IME-JL8 has been classified as the member of the Siphoviridae family, which exhibits the latent period of 30–40 min. The pH and thermal stability of phage IME-JL8 demonstrated that this bacteriophage achieved a pH range of 4–10 as well as a temperature range of 4, 25, and 37°C. As revealed from the results of whole genomic sequence analysis, IME-JL8 covers a double-stranded genome of 49,838 bp (exhibiting 47.96% G+C content), with 80 putative coding sequences contained. No bacterial virulence- or lysogenesis-related ORF was identified in the IME-JL8 genome, so it could be applicable to phage therapy. As indicated by the in vitro experiments, phage IME-JL8 is capable of effectively removing bacteria (the colony count decreased by 6.8 log units at 20 min), and biofilm can be formed in 24 h. According to the in vivo experiments, administrating IME-JL8 (1 × 107 PFU) was demonstrated to effectively protect the fish exhibiting a double median lethal dose (2 × 109 CFU/carp). Moreover, the phage treatment led to the decline of pro-inflammatory cytokines in carp with lethal infections. IME-JL8 was reported to induce efficient lysis of Citrobacter freundii both in vitro and in vivo, thereby demonstrating its potential as an alternative treatment strategy for infections attributed to Citrobacter freundii.


2021 ◽  
Author(s):  
Jacob J. Zulk ◽  
Justin R. Clark ◽  
Samantha Ottinger ◽  
Mallory B. Ballard ◽  
Marlyd E. Mejia ◽  
...  

ABSTRACTUrinary tract infections (UTIs) are among the most common infections treated worldwide each year and are primarily caused by uropathogenic E. coli (UPEC). Rising rates of antibiotic resistance among uropathogens have spurred consideration of alternative strategies such as bacteriophage (phage) therapy; however, phage-bacterial interactions within the urinary environment are poorly defined. Here, we assess the activity of two phages, HP3 and ES17, against clinical UPEC isolates using in vitro and in vivo models of UTI. In both bacteriologic medium and pooled human urine, we identified phage resistance arising within the first 6-8 hours of coincubation. Whole genome sequencing revealed that UPEC resistant to HP3 and ES17 harbored mutations in genes involved in lipopolysaccharide (LPS) biosynthesis. These mutations coincided with several in vitro phenotypes, including alterations to adherence to and invasion of human bladder epithelial HTB-9 cells, and increased biofilm formation. Interestingly, these phage-resistant UPEC demonstrated reduced growth in pooled human urine, which could be partially rescued by nutrient supplementation, and were more sensitive to several outer membrane targeting antibiotics than parental strains. Additionally, these phage-resistant UPEC were attenuated in a murine UTI model. In total, our findings suggest that while resistance to phages, such as LPS-targeted HP3 and ES17, may readily arise in the urinary environment, phage resistance is accompanied by fitness costs rendering UPEC more susceptible to host immunity or antibiotics.IMPORTANCEUTIs are one of the most common causes of outpatient antibiotic use, and rising antibiotic resistance threatens the ability to control these infections unless alternative treatments are developed. Bacteriophage (phage) therapy is gaining renewed interest, however, much like antibiotics, bacteria can readily become resistant to phage. For successful UTI treatment, we must predict how bacteria will evade killing by phage and identify the downstream consequences of phage-resistant bacterial infections. In our current study, we found that while phage-resistant mutant bacteria quickly emerged, these mutations left bacteria less capable of growing in human urine and colonizing the murine bladder. These results suggest that phage therapy poses a viable UTI treatment if phage resistance confers fitness costs for the uropathogen. These results have implications for developing cocktails of phage with multiple different bacterial targets, each of which is only evaded at the cost of bacterial fitness.


2015 ◽  
Vol 89 (15) ◽  
pp. 7449-7456 ◽  
Author(s):  
Diana P. Pires ◽  
Diana Vilas Boas ◽  
Sanna Sillankorva ◽  
Joana Azeredo

Antimicrobial resistance constitutes one of the major worldwide public health concerns. Bacteria are becoming resistant to the vast majority of antibiotics, and nowadays, a common infection can be fatal. To address this situation, the use of phages for the treatment of bacterial infections has been extensively studied as an alternative therapeutic strategy. SincePseudomonas aeruginosais one of the most common causes of health care-associated infections, many studies have reported thein vitroandin vivoantibacterial efficacy of phage therapy against this bacterium. This review collects data of all theP. aeruginosaphages sequenced to date, providing a better understanding about their biodiversity. This review further addresses thein vitroandin vivoresults obtained by using phages to treat or preventP. aeruginosainfections as well as the major hurdles associated with this therapy.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


1985 ◽  
Vol 13 (4) ◽  
pp. 261-266
Author(s):  
P.P. Monro ◽  
D.P. Knight ◽  
W.S. Pringle ◽  
D.M. Fyfe ◽  
J.R. Shearer

The toxicity of implant materials requires investigation prior to clinical use. We have developed a method where materials are directly applied to the chorioallantoic membrane (CAM) of 9-day-old chick embryos and toxicity is assessed using histological criteria. We evaluated the method using metal foils. The number and organisation of fibroblasts seemed to be the most useful criteria for assessing metal toxicity. Differences were greatest after 10 days of culture on the CAM. The method is sensitive enough to enable us to discriminate between the less toxic aluminium and titanium and the highly toxic cobalt, nickel and tungsten. The proposed method has advantages over in vitro techniques which provide an abnormal fluid environment and in which the more complex interactions that are possible between implant materials and tissue in vivo cannot be modelled.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Laurence Finot ◽  
Eric Chanat ◽  
Frederic Dessauge

AbstractIn vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D “tissues” called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals. Milk is synthesized and secreted by the differentiated polarized mammary epithelial cells of the gland. Reconstructing in vitro a mammary-like structure mimicking the functional tissue represents a major challenge in mammary gland biology, especially for farm animals for which specific agronomic questions arise. This would greatly facilitate the study of mammary gland development, milk secretion processes and pathological effects of viral or bacterial infections at the cellular level, all with the objective of improving milk production at the animal level. With this aim, various 3D cell culture models have been developed such as mammospheres and, more recently, efforts to develop organoids in vitro have been considerable. Researchers are now starting to draw inspiration from other fields, such as bioengineering, to generate organoids that would be more physiologically relevant. In this chapter, we will discuss 3D cell culture systems as organoids and their relevance for agronomic research.


Sign in / Sign up

Export Citation Format

Share Document