scholarly journals Resveratrol Improves Growth Performance, Intestinal Morphology, and Microbiota Composition and Metabolism in Mice

2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Zhuang ◽  
Huijun Huang ◽  
Shuang Liu ◽  
Feng Liu ◽  
Qiang Tu ◽  
...  

BackgroundResveratrol (RSV) plays a vital role in alleviating various stresses and improving intestinal health. The current study was conducted to explore whether RSV alleviates weaning stress through improving gut health in a weaning mouse model. Forty 21-day-old weaned mice were randomly assigned to a control group without RSV treatment and three treatment groups with 10, 20, and 50 mg/kg RSV for 28 days.ResultsThe results showed that RSV at a dose of 20 mg/kg improved total body weight, intestinal morphology (villus length and the ratio of villus length to crypt depth), and the levels of intestinal barrier proteins (claudin-1 and occludin), but had little effect on the food intake, crypt depth, and serum free amino acids of mice. Compared with the control group, mice supplemented with RSV had decreased mRNA expression of genes related to inflammatory cytokines (IL-6 and IL-1β), but increased mRNA expression of genes related to host defense peptides (Defa3, Defa5, Defa20, and Lyz) and short-chain fatty acids (SCFAs) production (propionic acid, isobutyric acid, butyric acid, and isovaleric acid). In addition, 16S rRNA sequencing results showed that RSV supplementation increased the richness indices of intestinal microbiota (Chao, ACE) and shaped the composition of intestinal microbiota (e.g., increased β-diversity of intestinal microbiota community). Meanwhile, RSV supplementation increased genes of Butyricicoccus, Ruminococcus_1, and Roseburia, which are producers of SCFAs. Furthermore, RSV supplementation significantly influenced the metabolism of intestinal microbiota, namely, amino acids metabolism, lipid metabolism, and defense mechanisms.ConclusionRSV can improve growth performance and intestinal morphology in weaning mice, possibly through improving gut immune response and microbiota function.

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 212-213
Author(s):  
xia xiong ◽  
Lvliang Wu ◽  
Yirui Shao ◽  
Jian zou ◽  
Yulong Yin

Abstract Glucan has been studied as a potential alternative to antibiotics for animals in recent years. The aim of this study was to evaluate the effect of dietary glucan on growth performance and gut health of weaning piglets, which is a water-soluble extracellular ꞵ-glucan produced by Agrobacterium sp. ZX09. A total of 108 weaned piglets (21 d of age; 6.05 ± 0.36 kg) were randomly assigned (6 pens/diet; 18 piglets/pen) to 3 dietary treatments consisting of a basal diet (control group) or the basal diet supplemented with 20 ppm olaquindox or 200 ppm glucan for 14 days, respectively. The results showed that piglets fed with glucan had greater (P < 0.05) body weight and average daily gain than piglets in control group. Piglets fed with glucan or antibiotic had greater villus height to crypt depth ratio on duodenum compared with control group (P < 0.05). The mRNA expression of Claudin-1 on duodenum or ileum was higher (P < 0.05) in glucan group than that on the other groups. The mRNA expression of TLR4, MYD88 and NFκB on jejunum were lower (P < 0.05) in glucan or antibiotic group than those in control group. Dietary supplementation with glucan tended to increase the IL-10 and SIgA concentration on ileum (0.05 < P < 0.1). Dietary supplementation with glucan tended to increase the total antioxidant capacity on jejunum (P = 0.093). In conclusion, 200 ppm glucan or 20 ppm olaquindox can improve the growth performance of weaning piglets. The glucan may can accelerate the growth of weaned piglets by improving gut health. This research will provide guidance for the olaquindox alternative on growing piglets.


2015 ◽  
Vol 15 (3) ◽  
pp. 681-697 ◽  
Author(s):  
Qiu Jue Wu ◽  
Qin Yu Wang ◽  
Tian Wang ◽  
Yan Min Zhou

Abstract The effects of natural clinoptilolite (NCLI) and modified clinoptilolite (MCLI) were evaluated in broilers challenged with lipopolysaccharide (LPS) in a 21-d feeding trial. A total of 288 one-day-old chickens were allocated into three treatment groups: control, NCLI (2%) and MCLI (2%). Half of the birds from each treatment group were challenged with either 0.9% NaCl solution or LPS (250 μg/kg body weight, orally administered) at 16, 18 and 21 d of age. Before the LPS challenge, no dietary effect on bird growth performance was found (P>0.05). When LPS was orally administered, no significant changes in growth performance of broilers was found (P>0.05). However, small intestinal morphology and development, malondialdehyde (MDA) content of the jejunual and ileal mucosa, and superoxide dismutase (SOD) activity of the ileal mucosa were significantly affected (P<0.05). Supplementation with NCLI and MCLI significantly decreased the MDA contents of the jejunual and ileal mucosa and improved the SOD activity of the ileal mucosa and the development of the small intestine compared with the control group (P<0.05). The results indicated that NCLI and MCLI additions in feed had protective effects on the gut health of broilers against LPS challenge.


2021 ◽  
Vol 7 ◽  
Author(s):  
Zhilong Tian ◽  
Xiaodan Wang ◽  
Yehui Duan ◽  
Yue Zhao ◽  
Wenming Zhang ◽  
...  

This study was conducted to investigate the effects of dietary supplementation with different types of Bacillus subtilis (B. subtilis) on the growth and gut health of weaned piglets. A total of 160 piglets were randomly assigned into four groups: control group (a basal diet), BS-A group (a basal diet supplemented with B. subtilis A at 1 × 106 CFU/g feed), BS-B group (a basal diet supplemented with B. subtilis B at 1 × 106 CFU/g feed), and BS-C group (a basal diet supplemented with B. subtilis C at 1 × 106 CFU/g feed). All groups had five replicates with eight piglets per replicate. On days 7, 21, and 42 of the trial, blood plasma and intestinal tissues and digesta samples were collected to determine plasma cytokine concentrations, intestinal morphology, gut microbiota community and metabolic activity, and the expression of genes related to gut physiology and metabolism. The results showed that dietary B. subtilis supplementation improved (P &lt; 0.05) the body weight and average daily gain (in BS-B and BS-C groups) of weaned piglets and decreased (P &lt; 0.05) the diarrhea rates (in BS-A, BS-B, and BS-C groups). In the intestinal morphology analysis, B. subtilis supplementation improved (P &lt; 0.05) the size of villus height and villus height to crypt depth ratio in the ileum of weaned piglets. Firmicutes, Bacteroidetes, and Tenericutes were the most dominant microflora in piglets' colon whatever the trial group and time of analysis. Dietary BS-C supplementation increased (P &lt; 0.05) the relative abundances of Anaerovibrio and Bulleidia and decreased (P &lt; 0.05) the relative abundances of Clostridium and Coprococcus compared with the control group. In addition, dietary B. subtilis supplementation increased (P &lt; 0.05) the indicators of intestinal health, including plasma levels of interleukin (IL)-2 and IL-10, as well as the colonic levels of short-chain fatty acids. Furthermore, dietary B. subtilis supplementation also up-regulated (P &lt; 0.05) the expression of genes involved in metabolic pathways related to intestinal microbiota maturation. In conclusion, these findings suggest that a diet containing BS-B or BS-C can efficiently promote growth performance, decrease diarrhea incidence, and ameliorate several indicators of intestinal health through the modulation of gut microbiota composition and metabolic activity in weaned piglets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Diao ◽  
Jiayou Yan ◽  
Shuwei Li ◽  
Shengyao Kuang ◽  
Xiaolan Wei ◽  
...  

The present study aimed to investigate the effects of dietary zinc sources on the growth performance and gut health of weaned piglets. In total, 96 Duroc × Landrace × Yorkshire (DLY) weaned piglets with an initial average body weight of 8.81±0.42kg were divided into four groups, with six replicates per treatment and four pigs per replicate. The dietary treatment groups were as follows: (1) control group, basal diet; (2) zinc sulphate (ZnSO4) group, basal diet +100mg/kg ZnSO4; (3) glycine zinc (Gly-Zn) group, basal diet +100mg/kg Gly-Zn and (4) zinc lactate group, and basal diet +100mg/kg zinc lactate. The whole trial lasted for 28days. Decreased F/G was noted in the Gly-Zn and zinc lactate groups (p&lt;0.05). The zinc lactate group had a lower diarrhea rate than the control group (p&lt;0.05). Moreover, the ZnSO4, Gly-Zn, and zinc lactate groups had significantly higher apparent total tract digestibility of dry matter (DM), crude protein (CP), ether extract (EE), crude ash, and zinc than the control group (p&lt;0.05). The Gly-Zn and zinc lactate groups had higher jejunal villus height and a higher villus height:crypt depth ratio than the control group (p&lt;0.05). In addition, the ZnSO4, Gly-Zn and zinc lactate groups had a significantly lower mRNA expression level of jejunal ZRT/IRT-like protein 4 (ZIP4) and higher mRNA expression level of jejunal interleukin-1β (IL-1β) than the control group (p&lt;0.05). The mRNA expression level of jejunal zinc transporter 2 (ZNT2) was higher and that of jejunal Bcl-2-associated X protein (Bax) was lower in the Gly-Zn and zinc lactate groups than in the control group (p&lt;0.05). Moreover, the zinc lactate group had a higher count of Lactobacillus spp. in the cecal digesta and higher mRNA expression levels of jejunal occludin and mucin 2 (MUC2) than the control group (p&lt;0.05). In conclusion, dietary supplementation with 100mg/kg ZnSO4, Gly-Zn, or zinc lactate could improve the growth performance and gut barrier function of weaned piglets. Dietary supplementation with organic zinc, particularly zinc lactate, had the best effect.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Liu ◽  
Qian Lin ◽  
Xuan Huang ◽  
Guitao Jiang ◽  
Chuang Li ◽  
...  

The present study investigated the effects of ferulic acid (FA) on the growth performance, serum cytokine profile, intestinal morphology, and intestinal microbiota in ducks at the growing stage. 300 female Linwu ducks at 28 days of age with similar body weights were randomly divided into five groups. Each group contained six replicates of 10 birds. The dietary treatments were corn-soybean-based diet supplemented with FA at the concentrations of 0 (control), 100, 200, 400, and 800 mg/kg diet. The results demonstrated that dietary FA at the levels of 200, 400, and 800 mg/kg increased the average daily gain (P = 0.01), 400 and 800 mg/kg FA increased the final body weight (P = 0.02), 100, 200, and 800 mg/kg FA increased the serum glutathione (P = 0.01), and 100, 400, and 800 mg/kg FA increased the glutathione peroxidase activities in birds (P &lt; 0.01). Additionally, 200, 400, and 800 mg/kg dietary FA lowered the serum levels of interleukin-2 (P = 0.02) and interleukin-6 (P = 0.04). Moreover, the morphometric study of the intestines indicated that 400 mg/kg FA decreased the crypt depth in jejunum (P = 0.01) and caecum (P = 0.04), and increased the ratio of villus height to crypt depth in jejunum (P = 0.02). Significant linear and/or quadratic relationships were found between FA concentration and the measured parameters. 16S rRNA sequencing revealed that dietary FA increased the populations of genera Faecalibacterium, Paludicola, RF39, and Faecalicoccus in the cecum (P &lt; 0.05), whereas decreased the populations of Anaerofilum and UCG-002 (P &lt; 0.05). The Spearman correlation analysis indicated that phylum Proteobacteria were negatively, but order Oscillospirales, and family Ruminococcaceae were positively related to the parameters of the growth performance. Phylum Bacteroidetes, class Negativicutes and family Rikenellaceae were negatively associated with the parameters of the antioxidative capability. And phylum Cyanobacteria, Elusimicrobia, and Bacteroidetes, class Bacilli, family Rikenellaceae, and genus Prevotella were positively associated with the parameters of the immunological capability. Thus, it was concluded that the supplementations of 400 mg/kg FA in diet was able to improve the growth performance, antioxidative and immunological capabilities, intestinal morphology, and modulated the gut microbial construction of Linwu ducks at the growing stage.


Author(s):  
Wen-Chao Liu ◽  
Yan Guo ◽  
Zhi-Hui Zhao ◽  
Rajesh Jha ◽  
Balamuralikrishnan Balasubramanian

This study aimed to determine the efficacy of dietary algae-derived polysaccharides (ADPs) from Enteromorpha on growth performance, intestinal morphology, intestinal permeability, and antioxidant capacity in serum, liver, and intestinal mucosa of broilers. Three hundred and ninety six day-old male chicks were randomly assigned to six dietary treatments containing 0 (Control), 1,000, 2,500, 4,000, 5,500, and 7,000 mg ADP/kg basal diet in a 35 day feeding trial. During day 1–21, compared with the control group, dietary 1,000–7,000 mg/kg ADP supplementation improved the average daily gain (ADG) and feed conversion ratio (p &lt; 0.05). Overall (day 1–35), dietary inclusion of 1,000 mg/kg ADP increased the final body weight and ADG (p &lt; 0.05). Besides, on day 21, dietary 2,500 mg/kg ADP supplementation increased the serum catalase (CAT) and liver total superoxide dismutase (T-SOD) activities (p &lt; 0.05), whereas dietary 1,000–5,500 mg/kg ADP supplementation decreased malondialdehyde (MDA) contents in serum and liver (p &lt; 0.05). On day 35, supplementation of 1,000 mg/kg ADP increased the serum glutathione peroxidase and CAT activities and liver T-SOD activities (p &lt; 0.05). It decreased the MDA level of serum and liver (p &lt; 0.05). Also, dietary 2,500 mg/kg ADP increased the villus height of jejunum and ileum on day 21 (p &lt; 0.05), and dietary 4,000 mg/kg ADP increased the villus height of duodenum and ileum on day 35 (p &lt; 0.05). On day 21, dietary 4,000 mg/kg ADP increased the CAT activities of the duodenum and T-SOD activities of jejunum and ileum and decreased the MDA contents in the duodenum, jejunum, and ileum (p &lt; 0.05). On day 35, dietary inclusion of 1,000–7,000 mg/kg ADP reduced MDA contents of duodenum and jejunum (p &lt; 0.05). Furthermore, dietary inclusion of ADP at 1,000–7,000 mg/kg decreased serum DAO activities at day 21 and day 35 (p &lt; 0.05), and the serum D-lactic acid concentration was reduced by dietary supplementation of 1,000, 2,500, and 7,000 mg/kg ADP on day 21. In conclusion, dietary ADP exerted beneficial effects on growth performance, antioxidant capacity, and gut health in broilers; based on the studied parameters, the appropriate recommended dose is 1,000–4,000 mg/kg. These findings provided new insights into the potential application of ADP as natural growth promoters in broilers.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zehe Song ◽  
Kaihuan Xie ◽  
Yunlu Zhang ◽  
Qian Xie ◽  
Xi He ◽  
...  

The restriction and banning of antibiotics in farm animal feed has led to a search for promising substitutes for antibiotics to promote growth and maintain health for livestock and poultry. Ginsenoside Rg1, which is one of the most effective bioactive components in ginseng, has been reported to have great potential to improve the anti-inflammatory and anti-oxidative status of animals. In this study, 360 Chinese indigenous broiler chickens with close initial body weight were divided into 5 groups. Each group contained 6 replicates and each replicate had 12 birds. The experimental groups were: the control group, fed with the basal diet; the antibiotic group, fed basal diet + 300 mg/kg 15% chlortetracycline; and three Rg1 supplementation groups, fed with basal diet + 100, 200, and 300 mg/kg ginsenoside Rg1, respectively. The growth performance, immune function, and intestinal health of birds were examined at early (day 1–28) and late (day 29–51) stages. Our results showed that dietary supplementation of 300 mg/kg ginsenoside Rg1 significantly improved the growth performance for broilers, particularly at the late stage, including an increase in final body weight and decrease of feed conversion ratio (P &lt; 0.05). Additionally, the integrity of intestinal morphology (Villus height, Crypt depth, and Villus height/Crypt depth) and tight junction (ZO-1 and Occludin), and the secretion of sIgA in the intestine were enhanced by the supplementation of Rg1 in chicken diet (P &lt; 0.05). The immune organ index showed that the weight of the thymus, spleen, and bursa was significantly increased at the early stage in ginsenoside Rg1 supplementation groups (P &lt; 0.05). Our findings might demonstrate that ginsenoside Rg1 could serve as a promising antibiotic alternative to improve the growth performance and gut health for broiler chickens mainly through its amelioration of inflammatory and oxidative activities.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2186
Author(s):  
Shilong Liu ◽  
Xiaoping Zhu ◽  
Yueqin Qiu ◽  
Li Wang ◽  
Xiuguo Shang ◽  
...  

This study aimed to investigate the effects of niacin on growth performance, intestinal morphology, intestinal mucosal immunity, and colonic microbiota in weaned piglets. A total of 96 weaned piglets (Duroc × (Landrace × Yorkshire), 21-d old, 6.65 ± 0.02 kg body weight (BW)) were randomly allocated into 3 treatment groups (8 replicate pens per treatment, each pen containing 4 males; n = 32/treatment) for 14 d. Piglets were fed a control diet (CON) or the CON diet supplemented with 20.4 mg/kg niacin (NA) or an antagonist for the niacin receptor GPR109A (MPN). The results showed that NA or MPN had no effect on ADG, ADFI, G/F or diarrhea incidence compared with the CON diet. However, compared with piglets in the NA group, piglets in the MPN group had lower ADG (p = 0.042) and G/F (p = 0.055). In comparison with the control and MPN group, niacin supplementation increased the villus height and the ratio of villus height to crypt depth (p < 0.05), while decreasing the crypt depth in the duodenum (p < 0.05). Proteomics analysis of cytokines showed that niacin supplementation increased the expression of duodenal transforming growth factor-β (TGF-β), jejunal interleukin-10 (IL-10) and ileal interleukin-6 (IL-6) (p < 0.05), and reduced the expression of ileal interleukin-8 (IL-8) (p < 0.05) compared with the control diet. Piglets in the MPN group had significantly increased expression of ileal IL-6, and jejunal IL-8 and interleukin-1β (IL-1β) (p < 0.05) compared with those in the control group. Piglets in the MPN group had lower jejunal IL-10 level and higher jejunal IL-8 level than those in the NA group (p < 0.05). The mRNA abundance of duodenal IL-8 and ileal granulocyte-macrophage colony-stimulating factor (GM-CSF) genes were increased (p < 0.05), and that of ileal IL-10 transcript was decreased (p < 0.05) in the MPN group compared with both the control and NA groups. Additionally, niacin increased the relative abundance of Dorea in the colon as compared with the control and MPN group (p < 0.05), while decreasing that of Peptococcus compared with the control group (p < 0.05) and increasing that of Lactobacillus compared with MPN supplementation (p < 0.05). Collectively, the results indicated that niacin supplementation efficiently ensured intestinal morphology and attenuated intestinal inflammation of weaned piglets. The protective effects of niacin on gut health may be associated with increased Lactobacillus and Dorea abundance and butyrate content and decreased abundances of Peptococcus.


Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 112
Author(s):  
Yiyan Cui ◽  
Zhimei Tian ◽  
Gang Wang ◽  
Xianyong Ma ◽  
Weidong Chen

The purpose of this study was to investigate the effects of citrus extract (CE) on plasma free amino acids, intestinal morphology and enzymes activity, fecal nitrogen and phosphorus emissions in piglets. The experiment was performed on 144 weaned piglets (Duroc × Landrace × Large White) divided into three groups. Control (CON), fed a basic diet; Antibiotic (ANTI), fed a basic diet supplemented with 75 g/t chlortetracycline; Citrus extract (CE), fed a basic diet supplemented with 300 mL/t CE. The albumin content of the CE group was significantly higher than the CON group. Compared with the CON and ANTI groups, the CE group had increased concentrations of plasma total essential amino acids and threonine. Compared with the CON group, CE increased the α-aminoadipic acid concentration, while compared with ANTI group, it increased the 3-methylhistidine concentration. Compared with the CON group, the crypt depth of duodenum, jejunum and ileum decreased, and the ratio of villus height to crypt depth of ileum increased in the ANTI and CE groups. CE increased the activity of alkaline phosphatase and lipase in duodenum, and the activity of alkaline phosphatase and trypsin in jejunum. In brief, CE improved the absorption and utilization of nitrogen, intestinal morphology and digestive enzymes activity.


Author(s):  
Siriporn Namted ◽  
Theerawit Poeikhampha ◽  
Choawit Rakangthong ◽  
Chaiyapoom Bunchasak

The study was conducted to determine the effect of supplemental capsaicin (CS) or capsaicin plus DL-methionine hydroxy analog (CS+LMA) in diets on growth performance and gastrointestinal conditions of nursery pigs. Seventy-two castrated male piglets (BW 7.79 ± 0.02 kg) were offered diets for 6 weeks as follows: 1) control diet, 2) control diet with capsaicin 2.5 ppm (CS), and 3) control diet with capsaicin 2.5 ppm plus DL-LMA 0.05 % (CS+LMA). The dietary treatments did not influence growth performance, gastrointestinal pH and the bacterial population in the caecum (P>0.05). However, in the caecum, number of Lactobacillus spp. tended to increase (P=0.09), and lactic acid concentration was increased (P less than 0.05) by CS+LMA supplementation. The supplemental CS or CS+LMA increased the villus height (P less than 0.01), and CS+LMA supplementation increased the crypt depth (P less than 0.05) in the segment of duodenum compared to the control group. The blood urea nitrogen (BUN) was not influenced by CS or CSLMA supplementations (P>0.05). In conclusion, supplementing CS improved the small intestinal morphology, and there were synergistic effects on the duodenal crypt depth and caecal lactic acid when LMA was combined with CS.


Sign in / Sign up

Export Citation Format

Share Document