scholarly journals Lactobacillus Biofilms Influence Anti-Candida Activity

2021 ◽  
Vol 12 ◽  
Author(s):  
Carola Parolin ◽  
Vanessa Croatti ◽  
Luca Laghi ◽  
Barbara Giordani ◽  
Maria Rosaria Tondi ◽  
...  

Lactobacilli are the dominant members of the healthy human vaginal microbiota and represent the first defense line from pathogen infection, including vulvovaginal candidiasis. Biofilm is the predominant microbial growth form in nature, and the formation of biofilms inside the human body has important implications in health and disease. In particular, the formation of biofilm by members of the human resident microbiota is desirable, as it can improve microbial persistence and influence functionality. In the present study, we investigated the capability of 16 vaginal Lactobacillus strains (belonging to Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus vaginalis, and Lactobacillus plantarum species) to form biofilms, and we correlated their mode of growth to anti-Candida activity. L. plantarum strains were the best biofilm producers, and high variability was registered in the level of biofilm formation among L. crispatus and L. gasseri strains. Culture supernatants derived from Lactobacillus biofilm and planktonic growth were tested toward a panel of Candida clinical isolates (Candida albicans, Candida glabrata, Candida lusitaniae, Candida tropicalis, Candida krusei, and Candida parapsilosis) and their metabolome assessed by 1H-NMR. L. crispatus and L. plantarum strains exhibited the best fungistatic profile, and biofilms enhanced their anti-Candida activity; on the contrary, L. gasseri strains were more effective when grown in a planktonic mode. Biofilm/planktonic mode of growth also affects Lactobacillus metabolism, mainly influencing nitrogen and amino acid pathways, and anti-Candida activity is instead strictly related to carbohydrate metabolism. The present study underlined the strict interdependence between microbial mode of growth, metabolism, and functional properties. Biofilm formation by members of the healthy human microbiota represents a crucial issue in the field of microbial physiology and host–microbiota interactions, beyond supporting the development of new antimycotic strategies based on probiotics grown in adherence.

2001 ◽  
Vol 66 (11) ◽  
pp. 1707-1719 ◽  
Author(s):  
Olga Hrušková-Heidingsfeldová ◽  
Jiří Dostál ◽  
Petr Hamal ◽  
Jarmila Pazlarová ◽  
Tomáš Ruml ◽  
...  

Opportunistic pathogens of the genusCandidaproduce secreted aspartic proteinases (Saps) that are considered as one of the virulence factors. While Saps ofC. albicansandC. tropicalishave been studied extensively, information concerning proteinases secreted by other pathogenicCandidaspecies is scarce. To our knowledge, enzymologic characterizations of Sap ofC. parapsilosis(Sapp1p) andC. lusitaniae(Saplp) are limited. We have purified Saps ofC. parapsilosisandC. lusitaniaefrom yeast culture supernatants and detected only one gene product of both Sapp1p and Saplp using isoelectric focusing and N-terminal sequencing. Molecular weight of Saplp determined by SDS-PAGE is approximately 42 000. For the highest enzyme activity, both Sapp1p and Saplp require pH ranging from 3 to 4 and temperature between 27-40 °C for Saplp and 45 °C for Sapp1p, respectively. At physiological temperature, both the proteinases are stable. The characterization of Saps of clinical isolates ofC. parapsilosisandC. lusitaniaeshould contribute to design of novel drugs specifically targeted on proteinases.


2020 ◽  
Vol 14 (1) ◽  
pp. 24
Author(s):  
Nevena Lj. Stevanović ◽  
Ivana Aleksic ◽  
Jakob Kljun ◽  
Sanja Skaro Bogojevic ◽  
Aleksandar Veselinovic ◽  
...  

Copper(II) and zinc(II) complexes with clinically used antifungal drug fluconazole (fcz), {[CuCl2(fcz)2].5H2O}n, 1, and {[ZnCl2(fcz)2]·2C2H5OH}n, 2, were prepared and characterized by spectroscopic and crystallographic methods. The polymeric structure of the complexes comprises four fluconazole molecules monodentately coordinated via the triazole nitrogen and two chlorido ligands. With respect to fluconazole, complex 2 showed significantly higher antifungal activity against Candida krusei and Candida parapsilosis. All tested compounds reduced the total amount of ergosterol at subinhibitory concentrations, indicating that the mode of activity of fluconazole was retained within the complexes, which was corroborated via molecular docking with cytochrome P450 sterol 14α-demethylase (CYP51) as a target. Electrostatic, steric and internal energy interactions between the complexes and enzyme showed that 2 has higher binding potency to this target. Both complexes showed strong inhibition of C. albicans filamentation and biofilm formation at subinhibitory concentrations, with 2 being able to reduce the adherence of C. albicans to A549 cells in vitro. Complex 2 was able to reduce pyocyanin production in Pseudomonas aeruginosa between 10% and 25% and to inhibit its biofilm formation by 20% in comparison to the untreated control. These results suggest that complex 2 may be further examined in the mixed Candida-P. aeruginosa infections.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0207574 ◽  
Author(s):  
Joachim Hickl ◽  
Aikaterini Argyropoulou ◽  
Maria Eleni Sakavitsi ◽  
Maria Halabalaki ◽  
Ali Al-Ahmad ◽  
...  

2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Wiley A. Schell ◽  
A. M. Jones ◽  
Katyna Borroto-Esoda ◽  
Barbara D. Alexander

ABSTRACT SCY-078 in vitro activity was determined for 178 isolates of resistant or susceptible Candida albicans, Candida dubliniensis, Candida glabrata, Candida krusei, Candida lusitaniae, and Candida parapsilosis, including 44 Candida isolates with known genotypic (FKS1 or FKS2 mutations), phenotypic, or clinical resistance to echinocandins. Results were compared to those for anidulafungin, caspofungin, micafungin, fluconazole, and voriconazole. SCY-078 was shown to have excellent activity against both wild-type isolates and echinocandin- and azole-resistant isolates of Candida species.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Nabeel Al-Sharrad ◽  
Muhammad A. Al-Kataan ◽  
Maha A. Al-Rejaboo

Otomycosis is a fungal infection that frequently involves the external auditory canal. In this study, we aimed to isolation and identification the fungal isolates as etiological agents of otomycosis from some hospitals and clinics in Mosul with determination of their virulence factors of fungal etiological agents. Positive fungal infection was found in (43) samples (71.6%). The most common fungal pathogens were Candida and Aspergillus species, with Candida parapsilosis being the predominant isolates in (11) samples (16.6%). Otomycosis was more common in Female in (26) samples (43.3%).Otomycosis was the highest prevalence aged group 15-40 years (19) samples (31.3%). The present study of virulence factors revealed that the highest biofilm formation isolates were C. parapsilosis is (10) isolates which were distributed between (2) strong and (8) weak biofilm formation.Where C.trpicales, was recorded as least isolates for biofilm production.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Lohith Kunyeit ◽  
Nawneet K. Kurrey ◽  
K. A. Anu-Appaiah ◽  
Reeta P. Rao

ABSTRACT Systemic infections of Candida species pose a significant threat to public health. Toxicity associated with current therapies and emergence of resistant strains present major therapeutic challenges. Here, we report exploitation of the probiotic properties of two novel, food-derived yeasts, Saccharomyces cerevisiae (strain KTP) and Issatchenkia occidentalis (strain ApC), as an alternative approach to combat widespread opportunistic fungal infections. Both yeasts inhibit virulence traits such as adhesion, filamentation, and biofilm formation of several non-albicans Candida species, including Candida tropicalis, Candida krusei, Candida glabrata, and Candida parapsilosis as well as the recently identified multidrug-resistant species Candida auris. They inhibit adhesion to abiotic surfaces as well as cultured colon epithelial cells. Furthermore, probiotic treatment blocks the formation of biofilms of individual non-albicans Candida strains as well as mixed-culture biofilms of each non-albicans Candida strain in combination with Candida albicans. The probiotic yeasts attenuated non-albicans Candida infections in a live animal. In vivo studies using Caenorhabditis elegans suggest that exposure to probiotic yeasts protects nematodes from infection with non-albicans Candida strains compared to worms that were not exposed to the probiotic yeasts. Furthermore, application of probiotic yeasts postinfection with non-albicans Candida alleviated pathogenic colonization of the nematode gut. The probiotic properties of these novel yeasts are better than or comparable to those of the commercially available probiotic yeast Saccharomyces boulardii, which was used as a reference strain throughout this study. These results indicate that yeasts derived from food sources could serve as an effective alternative to antifungal therapy against emerging pathogenic Candida species. IMPORTANCE Non-albicans Candida-associated infections have emerged as a major risk factor in the hospitalized and immunecompromised patients. Besides, antifungal-associated complications occur more frequently with these non-albicans Candida species than with C. albicans. Therefore, as an alternative approach to combat these widespread non-albicans Candida-associated infections, here we showed the probiotic effect of two yeasts, Saccharomyces cerevisiae (strain KTP) and Issatchenkia occidentalis (ApC), in preventing adhesion and biofilm formation of five non-albicans Candida strains, Candida tropicalis, Candida krusei, Candida glabrata, Candida parapsilosis, and Candida auris. The result would influence the current trend of the conversion of conventional antimicrobial therapy into beneficial probiotic microbe-associated antimicrobial treatment.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3144
Author(s):  
David Romera ◽  
Beatriz Toirac ◽  
John-Jairo Aguilera-Correa ◽  
Amaya García-Casas ◽  
Aránzazu Mediero ◽  
...  

Fungal prosthetic-joint infections are rare but devastating complications following arthroplasty. These infections are highly recurrent and expose the patient to the development of candidemia, which has high mortality rates. Patients with this condition are often immunocompromised and present several comorbidities, and thus pose a challenge for diagnosis and treatment. The most frequently isolated organisms in these infections are Candida albicans and Candida parapsilosis, pathogens that initiate the infection by developing a biofilm on the implant surface. In this study, a novel hybrid organo–inorganic sol–gel coating was developed from a mixture of organopolysiloxanes and organophosphite, to which different concentrations of fluconazole or anidulafungin were added. Then, the capacity of these coatings to prevent biofilm formation and treat mature biofilms produced by reference and clinical strains of C. albicans and C. Parapsilosis was evaluated. Anidulafungin-loaded sol–gel coatings were more effective in preventing C. albicans biofilm formation, while fluconazole-loaded sol–gel prevented C. parapsilosis biofilm formation more effectively. Treatment with unloaded sol–gel was sufficient to reduce C. albicans biofilms, and the sol–gels loaded with fluconazole or anidulafungin slightly enhanced this effect. In contrast, unloaded coatings stimulated C. parapsilosis biofilm formation, and loading with fluconazole reduced these biofilms by up to 99%. In conclusion, these coatings represent a novel therapeutic approach with potential clinical use to prevent and treat fungal prosthetic-joint infections.


2013 ◽  
Vol 13 (4) ◽  
pp. 438-451 ◽  
Author(s):  
Srisuda Pannanusorn ◽  
Bernardo Ramírez-Zavala ◽  
Heinrich Lünsdorf ◽  
Birgitta Agerberth ◽  
Joachim Morschhäuser ◽  
...  

ABSTRACT In Candida parapsilosis , biofilm formation is considered to be a major virulence factor. Previously, we determined the ability of 33 clinical isolates causing bloodstream infection to form biofilms and identified three distinct groups of biofilm-forming strains (negative, low, and high). Here, we establish two different biofilm structures among strains forming large amounts of biofilm in which strains with complex spider-like structures formed robust biofilms on different surface materials with increased resistance to fluconazole. Surprisingly, the transcription factor Bcr1, required for biofilm formation in Candida albicans and C. parapsilosis , has an essential role only in strains with low capacity for biofilm formation. Although BCR1 leads to the formation of more and longer pseudohyphae, it was not required for initial adhesion and formation of mature biofilms in strains with a high level of biofilm formation. Furthermore, an additional phenotype affected by BCR1 was the switch in colony morphology from rough to crepe, but only in strains forming high levels of biofilm. All bcr1 Δ/Δ mutants showed increased proteolytic activity and increased susceptibility to the antimicrobial peptides protamine and RP-1 compared to corresponding wild-type and complemented strains. Taken together, our results demonstrate that biofilm formation in clinical isolates of C. parapsilosis is both dependent and independent of BCR1 , but even in strains which showed a BCR1 -independent biofilm phenotype, BCR1 has alternative physiological functions.


2020 ◽  
Vol 295 (34) ◽  
pp. 11949-11962 ◽  
Author(s):  
Lindsey S. Marmont ◽  
Gregory B. Whitfield ◽  
Roland Pfoh ◽  
Rohan J. Williams ◽  
Trevor E. Randall ◽  
...  

Pel is a GalNAc-rich bacterial polysaccharide that contributes to the structure and function of Pseudomonas aeruginosa biofilms. The pelABCDEFG operon is highly conserved among diverse bacterial species, and Pel may therefore be a widespread biofilm determinant. Previous annotation of pel gene clusters has helped us identify an additional gene, pelX, that is present adjacent to pelABCDEFG in >100 different bacterial species. The pelX gene is predicted to encode a member of the short-chain dehydrogenase/reductase (SDR) superfamily, but its potential role in Pel-dependent biofilm formation is unknown. Herein, we have used Pseudomonas protegens Pf-5 as a model to elucidate PelX function as Pseudomonas aeruginosa lacks a pelX homologue in its pel gene cluster. We found that P. protegens forms Pel-dependent biofilms; however, despite expression of pelX under these conditions, biofilm formation was unaffected in a ΔpelX strain. This observation led us to identify a pelX paralogue, PFL_5533, which we designate here PgnE, that appears to be functionally redundant to pelX. In line with this, a ΔpelX ΔpgnE double mutant was substantially impaired in its ability to form Pel-dependent biofilms. To understand the molecular basis for this observation, we determined the structure of PelX to 2.1 Å resolution. The structure revealed that PelX resembles UDP-GlcNAc C4-epimerases. Using 1H NMR analysis, we show that PelX catalyzes the epimerization between UDP-GlcNAc and UDP-GalNAc. Our results indicate that Pel-dependent biofilm formation requires a UDP-GlcNAc C4-epimerase that generates the UDP-GalNAc precursors required by the Pel synthase machinery for polymer production.


Sign in / Sign up

Export Citation Format

Share Document