scholarly journals Knockdown of Long Non-coding RNA SNGH3 by CRISPR-dCas9 Inhibits the Progression of Bladder Cancer

2021 ◽  
Vol 8 ◽  
Author(s):  
Yu Cao ◽  
Qiong Hu ◽  
Ruiming Zhang ◽  
Ling Li ◽  
Mingjuan Guo ◽  
...  

Recent research evidence documents that lncRNAs (long non-coding RNAs lncRNAs) play a pivotal role in the tumorigenesis and development of tumors. LncRNA SNGH3 (small nucleolar RNA host gene 3) is highly expressed in numerous forms of cancer, serving as an oncogene in cancer progression. Nonetheless, the clinical relationship, along with the mechanism of SNGH3 in bladder cancer, have not been studied. Herein, the findings exhibited upregulation of SNGH3 in bladder cancer tissues, along with the cell lines. Furthermore, overexpressed SNGH3 was positively linked to the TNM stage, as well as the histological grade of bladder cancer. Moreover, the silencing of SNGH3, using CRISPR-dCas9, suppressed cell growth along with migration, but elevated bladder cancer cell apoptosis. In summary, we established that SNGH3 serves as a bladder cancer oncogene and could be employed as a prospective diagnostic marker for clinical use, and is also a therapeutic target for CRISPR-mediated gene therapy.

2017 ◽  
Vol 43 (1) ◽  
pp. 405-418 ◽  
Author(s):  
Yaoyao Xiong ◽  
Long Wang ◽  
Yuan Li ◽  
Minfeng Chen ◽  
Wei He ◽  
...  

Backgrounds/Aims: Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in the progression of several tumors. The interaction between lncRNA and miRNA or miRNA’s target genes is reported to play crucial roles in malignancy. In addition, Androgen receptor (AR) is considered to be involved in bladder cancer progression. In this study, we investigated the role of XIST in human bladder cancer and its interaction with miR-124 and AR. Methods: XIST and AR expression was detected in bladder tumor samples and cell lines. Effects of XIST and AR on bladder cancer cells growth, invasion and migration were analyzed. Bioinformatic analysis and luciferase assays were used to identify the interaction among XIST, AR and miR-124. The correlations of miR-124 with XIST and AR in bladder cancer samples were statistically analyzed. Results: XIST and AR were upregulated in bladder cancer tissues and positively correlated. Higher XIST and AR expression were related to poorer TNM stage of bladder cancer. XIST knockdown reduced bladder cancer cells’ proliferation, invasion and migration. While this inhibitory effect could be partially restored by AR overexpression. XIST inhibited miR-124 expression by directly targeting. Moreover, miR-124 could bind to the 3’UTR of AR to regulate its expression. MiR-124 inhibition partially restored the XIST knockdown-induced reduction of AR, c-myc, p27, MMP13 and MMP9 expression. In bladder cancer tissues, miR-124 level was inversely correlated with the expression of XIST and AR, respectively. Conclusion: These findings indicated that XIST might be an oncogenic lncRNA that promoted the bladder cancer growth, invasion and migration via miR-124 dependent AR regulation.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3086
Author(s):  
Cong Zhou ◽  
Shiwei Duan

Studies have shown that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), play an important regulatory role in the occurrence and development of human cancer. Nicotinamide nucleotide transhydrogenase-antisense 1 (NNT-AS1) is a newly-discovered cytoplasmic lncRNA. Many studies have shown that it has abnormally-high expression levels in malignant tumors, but there are also a few studies that have reported low expression levels of NNT-AS1 in gastric cancer, breast cancer, and ovarian cancer. At present, the regulatory mechanism of NNT-AS1 as a miRNA sponge, which may be an important reason affecting tumor cell proliferation, invasion, metastasis, and apoptosis is being studied in-depth. In addition, NNT-AS1 has been found to be related to cisplatin resistance. In this review, we summarize the abnormal expression of NNT-AS1 in a variety of neoplastic diseases and its diagnostic and prognostic value, and we explain the mechanism by which NNT-AS1 regulates cancer progression by competing with miRNAs. In addition, we also reveal the correlation between NNT-AS1 and cisplatin resistance and the potential clinical applications of NNT-AS1.


2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Haifan Yang ◽  
Ge Li ◽  
Bo Cheng ◽  
Rui Jiang

Long non-coding RNA (lncRNA) ZFAS1 (zinc finger antisense 1) has been suggested to have an oncogenic role in the tumorigenesis of human malignant tumors. However, the expression status and biological function of ZFAS1 in bladder cancer is still unknown. Thus, the purpose of the present study is to explore the clinical value of ZFAS1 in bladder cancer patients, and the biological function of ZFAS1 in bladder cancer cell. In the present study, we found ZFAS1 expression was increased in bladder cancer tissues compared with paired adjacent normal tissues through analyzing the Cancer Genome Atlas (TCGA) database. Furthermore, we confirmed that levels of ZFAS1 expression were elevated in bladder cancer tissues and cell lines compared with normal bladder tissues and normal uroepithelium cell line, respectively. Then, we observed that the expression level of ZFAS1 was positively associated with clinical stag, muscularis invasion, lymph node metastasis, and distant metastasis in bladder cancer patients. The experiments in vitro suggested that knockdown of ZFAS1 repressed bladder cancer cell proliferation via up-regulating KLF2 and NKD2 expression, and inhibited cell migration and invasion via down-regulating ZEB1 and ZEB2 expression. In conclusion, ZFAS1 is overexpressed in bladder cancer, and functions as an oncogenic lncRNA in regulating bladder cancer cell proliferation, migration, and invasion.


Author(s):  
Anwei Liu ◽  
Zhensheng Zhang ◽  
Weidong Xu ◽  
Shengfei Qin ◽  
Meimian Hua ◽  
...  

2018 ◽  
Vol 38 (1) ◽  
Author(s):  
Shanyang He ◽  
Yunhe Zhao ◽  
Xiaoping Wang ◽  
Yalan Deng ◽  
Zhiyong Wan ◽  
...  

Long non-coding RNA small nucleolar RNA host gene 20 (SNHG20) has been demonstrated to play crucial regulatory roles in many types of cancer. However, the biological function of long ncRNA (lncRNA) SNHG20 in ovarian cancer is still unclear. In the present study, we found that lncRNA SNHG20 was significantly increased in ovarian cancer. In addition, lncRNA SNHG20 knockdown suppressed the ovarian cancer progression, whereas overexpression of SNHG20 showed the opposite effects. Moreover, our results also revealed that lncRNA SNHG20 knockdown inhibited Wnt/β-catenin signaling activity by suppressing β-catenin expression and reversing the downstream target gene expression. Taken together, lncRNA SNHG20 plays an pivotal role in ovarian cancer progression by regulating Wnt/β-catenin signaling.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiu Liu ◽  
Chanyuan Liu ◽  
Aijun Zhang ◽  
Qi Wang ◽  
Jiao Ge ◽  
...  

Abstract Background Dysregulation of long non-coding RNAs has been implied to connect with cancer progression. This research was to decipher the mechanism of long non-coding RNA SDCBP2-AS1 in ovarian cancer (OC) through regulation of microRNA (miR)-100-5p and ependymin-related protein 1 (EPDR1). Methods LncRNA SDCBP2-AS1 and EPDR1 levels in OC were assessed by Gene Expression Profiling Interactive Analysis. lncRNA SDCBP2-AS1, miR-100-5p, and EPDR1 levels in OC tissues and cells were determined. SKOV3 and A2780 cells were transfected with lncRNA SDCBP2-AS1, miR-100-5p, and EPDR1-related plasmids or sequences, and then their functions in cell viability, apoptosis, migration, and invasion were evaluated. The interplay of lncRNA SDCBP2-AS1, miR-100-5p, and EPDR1 was clarified. Results LncRNA SDCBP2-AS1 and EPDR1 levels were suppressed whilst miR-100-5p level was elevated in OC. After upregulating lncRNA SDCBP2-AS1 or EPDR1, viability, migration, and invasion of OC cells were impaired, and apoptosis rate was increased. Downregulating EPDR1 or upregulating miR-100-5p partially mitigated upregulated lncRNA SDCBP2-AS1-induced impacts on the biological functions of OC cells. LncRNA SDCBP2-AS1 sponged miR-100-5p, and EPDR1 was targeted by miR-100-5p. Conclusion It is illustrated that lncRNA SDCBP2-AS1 regulates EPDR1 by sponge adsorption of miR-100-5p to inhibit the progression of OC.


Sign in / Sign up

Export Citation Format

Share Document