scholarly journals Roles of Integrins in Gastrointestinal Cancer Metastasis

2021 ◽  
Vol 8 ◽  
Author(s):  
Sicong Hou ◽  
Jiaxin Wang ◽  
Wenqian Li ◽  
Xin Hao ◽  
Qinglei Hang

Integrins are a large family of heterodimeric transmembrane receptors which mediate cell adhesion and transmit signals to the cell interior. The mechanistic roles of integrins have long been an enigma in cancer, given its complexity in regulating different cellular behaviors. Recently, however, increasing research is providing new insights into its function and the underlying mechanisms, which collectively include the influences of altered integrin expression on the aberrant signaling pathways and cancer progression. Many studies have also demonstrated the potentiality of integrins as therapeutic targets in cancer treatment. In this review, we have summarized these recent reports and put a particular emphasis on the dysregulated expression of integrins and how they regulate related signaling pathways to facilitate the metastatic progression of gastrointestinal cancer, including gastric cancer (GC) and colorectal cancer (CRC), which will address the crucial roles of integrins in gastrointestinal cancer.

2020 ◽  
Vol 27 (8) ◽  
pp. 1367-1381 ◽  
Author(s):  
Sarah Visentin ◽  
Mirela Sedić ◽  
Sandra Kraljević Pavelić ◽  
Krešimir Pavelić

The metastatic process has still not been completely elucidated, probably due to insufficient knowledge of the underlying mechanisms. Here, we provide an overview of the current findings that shed light on specific molecular alterations associated with metastasis and present novel concepts in the treatment of the metastatic process. In particular, we discuss novel pharmacological approaches in the clinical setting that target metastatic progression. New insights into the process of metastasis allow optimisation and design of new treatment strategies, especially in view of the fact that metastatic cells share common features with stem cells. Nano- and micro-technologies are herein elaborated in details as a promising therapeutic concept in targeted drug delivery for metastatic cancer. Progression in the field could provide a more efficient way to tackle metastasis and thus bring about advancements in the treatment and management of patients with advanced cancer.


2007 ◽  
Vol 27 (21) ◽  
pp. 7538-7550 ◽  
Author(s):  
JuanJuan Yin ◽  
Claire Pollock ◽  
Kirsten Tracy ◽  
Monika Chock ◽  
Philip Martin ◽  
...  

ABSTRACT A hallmark of metastasis is organ specificity; however, little is known about the underlying signaling pathways responsible for the colonization and growth of tumor cells in target organs. Since tyrosine kinase receptor activation is frequently associated with prostate cancer progression, we have investigated the role of a common signaling intermediary, activated Ras, in prostate cancer metastasis. Three effector pathways downstream of Ras, Raf/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase, and Ral guanine nucleotide exchange factors (RalGEFs), were assayed for their ability to promote the metastasis of a tumorigenic, nonmetastatic human prostate cancer cell line, DU145. Oncogenic Ras promoted the metastasis of DU145 to multiple organs, including bone and brain. Activation of the Raf/ERK pathway stimulated metastatic colonization of the brain, while activation of the RalGEF pathway led to bone metastases, the most common organ site for prostate cancer metastasis. In addition, loss of RalA in the metastatic PC3 cell line inhibited bone metastasis but did not affect subcutaneous tumor growth. Loss of Ral appeared to suppress expansive growth of prostate cancer cells in bone, whereas homing and initial colonization were less affected. These data extend our understanding of the functional roles of the Ral pathway and begin to identify signaling pathways relevant for organ-specific metastasis.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 337
Author(s):  
Andrea York Tiang Teo ◽  
Xiaoqiang Xiang ◽  
Minh TN Le ◽  
Andrea Li-Ann Wong ◽  
Qi Zeng ◽  
...  

Distant organ metastases accounts for the majority of breast cancer deaths. Given the prevalence of breast cancer in women, it is imperative to understand the underlying mechanisms of its metastatic progression and identify potential targets for therapy. Since their discovery in 1993, microRNAs (miRNAs) have emerged as important regulators of tumour progression and metastasis in various cancers, playing either oncogenic or tumour suppressor roles. In the following review, we discuss the roles of miRNAs that potentiate four key areas of breast cancer metastasis—angiogenesis, epithelial-mesenchymal transition, the Warburg effect and the tumour microenvironment. We then evaluate the recent developments in miRNA-based therapies in breast cancer, which have shown substantial promise in controlling tumour progression and metastasis. Yet, certain challenges must be overcome before these strategies can be implemented in clinical trials.


2020 ◽  
Vol 3 (4) ◽  
pp. e201900427
Author(s):  
Nathaniel J Robinson ◽  
Chevaun D Morrison-Smith ◽  
Alex J Gooding ◽  
Barbara J Schiemann ◽  
Mark W Jackson ◽  
...  

Metastasis is the leading cause of breast cancer-related death and poses a substantial clinical burden owing to a paucity of targeted treatment options. The clinical manifestations of metastasis occur years-to-decades after initial diagnosis and treatment because disseminated tumor cells readily evade detection and resist therapy, ultimately giving rise to recurrent disease. Using an unbiased genetic screen, we identified SLX4-interacting protein (SLX4IP) as a regulator of metastatic recurrence and established its relationship in governing telomere maintenance mechanisms (TMMs). Inactivation of SLX4IP suppressed alternative lengthening of telomeres (ALT), coinciding with activation of telomerase. Importantly, TMM selection dramatically influenced metastatic progression and survival of patients with genetically distinct breast cancer subtypes. Notably, pharmacologic and genetic modulation of TMMs elicited telomere-dependent cell death and prevented disease recurrence by disseminated tumor cells. This study illuminates SLX4IP as a potential predictive biomarker for breast cancer progression and metastatic relapse. SLX4IP expression correlates with TMM identity, which also carries prognostic value and informs treatment selection, thereby revealing new inroads into combating metastatic breast cancers.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Ching-Wen Lin ◽  
Pei-Ying Lin ◽  
Pan-Chyr Yang

Epithelial-derived tumor cells acquire the capacity for epithelial-to-mesenchymal transition (EMT), which enables them to invade adjacent tissues and/or metastasize to distant organs. Cancer metastasis is the main cause of cancer-related death. Molecular mechanisms involved in the switch from an epithelial phenotype to mesenchymal status are complicated and are controlled by a variety of signaling pathways. Recently, a set of noncoding RNAs (ncRNAs), including miRNAs and long noncoding RNAs (lncRNAs), were found to modulate gene expressions at either transcriptional or posttranscriptional levels. These ncRNAs are involved in EMT through their interplay with EMT-related transcription factors (EMT-TFs) and EMT-associated signaling. Reciprocal regulatory interactions between lncRNAs and miRNAs further increase the complexity of the regulation of gene expression and protein translation. In this review, we discuss recent findings regarding EMT-regulating ncRNAs and their associated signaling pathways involved in cancer progression.


2018 ◽  
Author(s):  
Samuel C. Lee ◽  
Alistair Quinn ◽  
Thin Nguyen ◽  
Svetha Venkatesh ◽  
Thomas P. Quinn

AbstractIn the progression of cancer, cells acquire genetic mutations that cause uncontrolled growth. Over time, the primary tumour may undergo additional mutations that allow for the cancerous cells to spread throughout the body as metastases. Since metastatic development typically results in markedly worse patient outcomes, research into the identity and function of metastasisassociated biomarkers could eventually translate into clinical diagnostics or novel therapeutics. Although the general processes underpinning metastatic progression are understood, no consistent nor clear cross-cancer biomarker profile has yet emerged. However, the literature suggests that some microRNAs (miRNAs) may play an important role in the metastatic progression of several cancer types. Using a subset of The Cancer Genome Atlas (TCGA) data, we performed an integrated analysis of mRNA and miRNA expression with paired metastatic and primary tumour samples to interrogate how the miRNA-mRNA regulatory axis influences metastatic progression. From this, we successfully built mRNAand miRNA-specific classifiers that can discriminate pairs of metastatic and primary samples across 11 cancer types. In addition, we identified a number of miRNAs whose metastasis-associated dysregulation could predict mRNA metastasis-associated dysregulation. Among the most predictive miRNAs, we found several previously implicated in cancer progression, including miR-301b, miR-1296, and miR-423. Taken together, our results suggest that cross-cancer metastatic samples have unique biomarker signatures when compared with paired primary tumours, and that these miRNA biomarkers can be used to predict both metastatic status and mRNA expression.


2018 ◽  
Vol 48 (6) ◽  
pp. 2429-2440 ◽  
Author(s):  
Yang Xu ◽  
Jie  Xu ◽  
Yanfang Yang ◽  
Lei Zhu ◽  
Xubin Li ◽  
...  

Background/Aims: The chondroitin sulfate proteoglycan serglycin (SRGN), a hematopoietic cell granule proteoglycan, has been implicated in promoting tumor metastasis; however, the underlying mechanisms remain to be elucidated. The present study aimed to investigate the SRGN gene expression and its regulation as downstream signaling of hypoxia-inducible transcription factor 1 alpha (HIF-1α) in colorectal cancer (CRC) cells and tissues. Methods: The expression of SRGN was analyzed in CRC specimens for its correlation with progression and metastasis. Using chromatin-immunoprecipitation (ChIP), quantitative real-time PCR, Western blot, and transwell assay, the functional role and underlying mechanism of SRGN in CRC metastasis were elucidated. Thus, this study provides evidence of a critical role of SRGN in metastatic progression of CRC. Results: Our results indicated that SRGN overexpression was significantly associated with poor prognosis in CRC specimens. SRGN overexpression promoted CRC cell migration and invasion in vitro; however, SRGN depletion exhibited contrasting effects. Mechanistic investigations revealed that HIF-1α regulated SRGN transcription via physically binding to a hypoxia response element in its promoter region. Conclusions: In conclusion, we demonstrated that dysregulated HIF-1α/SRGN signaling promotes CRC progression and metastasis. SRGN may serve as a potential candidate therapeutic target for metastatic CRC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tanchun Cheng ◽  
Shouguo Huang

Metastasis remains to be a huge challenge in cancer therapy. The mechanism underlying cervical cancer metastasis is not well understood and needs to be elucidated. Recent studies have highlighted the diverse roles of non-coding RNAs in cancer progression and metastasis. Increasing numbers of miRNAs, lncRNAs and circRNAs are found to be dysregulated in cervical cancer, associated with metastasis. They have been shown to regulate metastasis through regulating metastasis-related genes, epithelial-mesenchymal transition, signaling pathways and interactions with tumor microenvironment. Moreover, miRNAs can interact with lncRNAs and circRNAs respectively during this complex process. Herein, we review literatures up to date involving non-coding RNAs in cervical cancer metastasis, mainly focus on the underlying mechanisms and highlight the interaction network between miRNAs and lncRNAs, as well as circRNAs. Finally, we discuss the therapeutic prospects.


2020 ◽  
Vol 17 (5) ◽  
pp. 379-391
Author(s):  
Farzaneh Afzali ◽  
Parisa Ghahremanifard ◽  
Mohammad Mehdi Ranjbar ◽  
Mahdieh Salimi

Background: The tolerogenic homeostasis in Breast Cancer (BC) can be surpassed by rationally designed immune-encouraging constructs against tumor-specific antigens through immunoinformatics approach. Objective: Availability of high throughput data providing the underlying concept of diseases and awarded computational simulations, lead to screening the potential medications and strategies in less time and cost. Despite the extensive effects of Placenta Specific 1 (PLAC1) in BC progression, immune tolerance, invasion, cell cycle regulation, and being a tumor-specific antigen the fundamental mechanisms and regulatory factors were not fully explored. It is also worth to design an immune response inducing construct to surpass the hurdles of traditional anti-cancer treatments. Methods and Result: The study was initiated by predicting and modelling the PLAC1 secondary and tertiary structures and then engineering the fusion pattern of PLAC1 derived immunodominant predicted CD8+ and B-cell epitopes to form a multi-epitope immunogenic construct. The construct was analyzed considering the physiochemical characterization, safety, antigenicity, post-translational modification, solubility, and intrinsically disordered regions. After modelling its tertiary structure, proteinprotein docking simulation was carried out to ensure the attachment of construct with Toll-Like Receptor 4 (TLR4) as an immune receptor. To guarantee the highest expression of the designed construct in E. coli k12 as an expressional host, the codon optimization and in-silico cloning were performed. The PLAC1 related miRNAs in BC were excavated and validated through TCGA BC miRNA-sequencing and databases; the common pathways then were introduced as other probable mechanisms of PLAC1 activity. Conclusion: Regarding the obtained in-silico results, the designed anti-PLAC1 multi-epitope construct can probably trigger humoral and cellular immune responses and inflammatory cascades, therefore may have the potential of halting BC progression and invasion engaging predicted pathways.


Sign in / Sign up

Export Citation Format

Share Document