scholarly journals The Blood Component Iron Causes Neuronal Apoptosis Following Intracerebral Hemorrhage via the PERK Pathway

2020 ◽  
Vol 11 ◽  
Author(s):  
Muyao Wu ◽  
Rong Gao ◽  
Baoqi Dang ◽  
Gang Chen

PERK signaling pathway plays an important role in neuronal apoptosis after Intracerebral hemorrhage (ICH). ICH can cause the release of blood components into the brain. However, which component in the blood plays a major role still unclear. This study was designed to investigate the activation of the PERK pathway in different blood components after ICH and explore which components have major relationships with neuronal apoptosis. Eighty-five Sprague–Dawley rats were used to establish an ICH model. Western blot (WB) and immunofluorescence (IF) were used to evaluate the expression of the PERK pathway. TUNEL staining, FJC staining and neurological score were used to evaluate neuronal apoptosis and necrosis after ICH. The results showed that protein levels of p-PERK and p-eIF2α were upregulated following ICH with the injection of Fe3+ and Fe2+ after 48 h. Then, deferoxamine (DFX) was used to study the roles of Fe3+ in ICH through the PERK signaling pathway. The results showed that injection of DFX reversed increasing protein levels and prevented neuronal apoptosis. Thus, iron plays an important role in ICH through the PERK signaling pathway. Furthermore, the reduction of iron demonstrates neuroprotective effects in ICH. This suggests that targeting intervention of the iron and PERK pathway could be an effective treatment strategy to improve ICH prognosis.

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Xiao Hu ◽  
Shirong Li ◽  
Desislava Met Doycheva ◽  
Lei Huang ◽  
Cameron Lenahan ◽  
...  

Oxidative stress (OS) and neuronal apoptosis are major pathological processes after hypoxic-ischemic encephalopathy (HIE). Colony stimulating factor 1 (CSF1), binding to CSF1 receptor (CSF1R), has been shown to reduce neuronal loss after hypoxic-ischemia- (HI-) induced brain injury. In the present study, we hypothesized that CSF1 could alleviate OS-induced neuronal degeneration and apoptosis through the CSF1R/PLCG2/PKA/UCP2 signaling pathway in a rat model of HI. A total of 127 ten-day old Sprague Dawley rat pups were used. HI was induced by right common carotid artery ligation with subsequent exposure to hypoxia for 2.5 h. Exogenous recombinant human CSF1 (rh-CSF1) was administered intranasally at 1 h and 24 h after HI. The CSF1R inhibitor, BLZ945, or phospholipase C-gamma 2 (PLCG2) inhibitor, U73122, was injected intraperitoneally at 1 h before HI induction. Brain infarct volume measurement, cliff avoidance test, righting reflex test, double immunofluorescence staining, western blot assessment, 8-OHdG and MitoSOX staining, Fluoro-Jade C staining, and TUNEL staining were used. Our results indicated that the expressions of endogenous CSF1, CSF1R, p-CSF1R, p-PLCG2, p-PKA, and uncoupling protein2 (UCP2) were increased after HI. CSF1 and CSF1R were expressed in neurons and astrocytes. Rh-CSF1 treatment significantly attenuated neurological deficits, infarct volume, OS, neuronal apoptosis, and degeneration at 48 h after HI. Moreover, activation of CSF1R by rh-CSF1 significantly increased the brain tissue expressions of p-PLCG2, p-PKA, UCP2, and Bcl2/Bax ratio, but reduced the expression of cleaved caspase-3. The neuroprotective effects of rh-CSF1 were abolished by BLZ945 or U73122. These results suggested that rh-CSF1 treatment attenuated OS-induced neuronal degeneration and apoptosis after HI, at least in part, through the CSF1R/PLCG2/PKA/UCP2 signaling pathway. Rh-CSF1 may serve as therapeutic strategy against brain damage in patients with HIE.


2021 ◽  
Author(s):  
Zhaoqi Zhang ◽  
Peiwen Guo ◽  
Zhengcai Jia ◽  
Tunan Chen ◽  
Hua Feng

Abstract BackgroundIn brain, NLRP3 inflammasome, mainly derived from macrophage/microglia, is involved in proinflammatory and neurodeficits after hemorrhage, and autophagy is vital for neuronal homeostasis and functions. Accumulating evidence suggested that NLRP3 inflammasome and autophagy played an important role in intracerebral hemorrhage (ICH). Thus, this study was designed to further explore the pathogenesis of neurodeficits after in posthemorrhagic hydrocephalus.MethodsAutologous blood injection model was induced to mimic ICH with ventricular extension (ICH-IVH) in Sprague-Dawley rats. To elucidate the underlying mechanism, the NLRP3 inflammasome inhibitor MCC950 was administered abdominally at 1 h after ICH-IVH. Magnetic resonance imaging, neurobehavioral tests, immunofluorescence, western blotting, Fluoro-Jade C- staining, Tunel staining, and Quantitative RNA Sequencing were performed.ResultsIn the acute phase of ICH-IVH, both the expression of NLRP3 inflammasome and the autophagy of neurons were upregulated. The activated NLRP3 in macrophage/microglia promoted the release of IL-1β to extracellular, which contributed to excessive autophagy, leading to neurons apoptosis both in vivo and in vitro. AMPK/Beclin-1 pathway played an important role in NLRP3-related neurons autophagy. Using MCC950(NLRP3 inflammasome specific inhibitor) treatment after ICH-IVH significantly reduced ventricles dilation, improved neurofunction, down-regulated the release of IL-1β, and alleviated neuroinflammation and excessive autophagy.ConclusionsOur finding demonstrated that NLRP3 inflammasome activated in microglia/macrophage aggravated neurological outcomes and neuronal apoptosis by upregulating autophagy after ICH-IVH, which was partly mediated by the AMPK/Beclin-1 pathway. Therefore, inhibiting the activation of NLRP3 may be a potential therapeutic strategy for the neurodeficits of ICH-IVH patients.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sher-Wei Lim ◽  
Hui-Chen Su ◽  
Tee-Tau Eric Nyam ◽  
Chung-Ching Chio ◽  
Jinn-Rung Kuo ◽  
...  

Abstract Background Ceftriaxone is a β-lactam antibiotic used to treat central nervous system infections. Whether the neuroprotective effects of ceftriaxone after TBI are mediated by attenuating neuroinflammation but not its antibacterial actions is not well established. Methods Anesthetized male Sprague–Dawley rats were divided into sham-operated, TBI + vehicle, and TBI + ceftriaxone groups. Ceftriaxone was intraperitoneally injected at 0, 24, and 48 h with 50 or 250 mg/kg/day after TBI. During the first 120 min after TBI, we continuously measured heart rate, arterial pressure, intracranial pressure (ICP), and cerebral perfusion pressure. The infarct volume was measured by TTC staining. Motor function was measured using the inclined plane. Glutamate transporter 1 (GLT-1), neuronal apoptosis and TNF-α expression in the perilesioned cortex were investigated using an immunofluorescence assay. Bacterial evaluation was performed by Brown and Brenn’s Gram staining. These parameters above were measured at 72 h after TBI. Results Compared with the TBI + vehicle group, the TBI + ceftriaxone 250 mg/kg group showed significantly lower ICP, improved motor dysfunction, reduced body weight loss, decreased infarct volume and neuronal apoptosis, decreased TBI-induced microglial activation and TNF-α expression in microglia, and increased GLT-1 expression in neurons and microglia. However, the grades of histopathological changes of antibacterial effects are zero. Conclusions The intraperitoneal injection of ceftriaxone with 250 mg/kg/day for three days may attenuate TBI by increasing GLT-1 expression and reducing neuroinflammation and neuronal apoptosis, thereby resulting in an improvement in functional outcomes, and this neuroprotective effect is not related to its antibacterial effects.


Author(s):  
Ling Long ◽  
Xiaodong Cai ◽  
Jinchi Liao ◽  
Xiaomeng Ma ◽  
Yingying Liu ◽  
...  

IntroductionThe pathogenesis of Parkinson’s disease (PD) is closely related to mitophagy, a process regulated by miRNAs and long non-coding RNAs (lncRNAs). In this study, we investigated the role of the lncRNA-CasC7/miR-30c/BNIP3L (BCL2 Interacting Protein 3 Like) signaling pathway in PD.Material and methodsA 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD was generated and treated by hydrogen sulfide (H2S) inhalation. The SH-SY5Y cell model of PD was generated by MPP+ and the treatment was NaHS. The open field, rotarod and tail suspension tests were performed to assess motor deficits. TUNEL and immunofluorescence assays were used to evaluate neuronal apoptosis in mice and in SH-SY5Y cell culture. Real-time PCR was performed to measure the expression level of the lncRNA-CasC7, miR-30c and BNIP3L, and western blotting was used to assess the protein levels of CBS, BNIP3L and PINK1. Luciferase assays were conducted to examine the regulatory relationship between miR-30c and lncRNA-CasC7/BNIP3L.ResultsH2S inhalation alleviated the motor disorder and neuronal apoptosis in PD mice, and NaHS treatment inhibited apoptosis in the SH-SY5Y cell culture model of PD. The sulfide compounds also ameliorated the dysregulated expression of CasC7, miR-30c, BNIP3L, and PINK1 in the PD models. Furthermore, miR-30c significantly inhibited the expression of lncRNA-CasC7 and BNIP3L, as assessed with the luciferase assays.ConclusionsOur findings suggest that the lncRNA-CasC7/miR-30c/BNIP3L mitophagy signaling pathway is involved in the pathogenesis of PD.


2021 ◽  
Vol 13 ◽  
Author(s):  
Jia Sun ◽  
Jinzhong Cai ◽  
Junhui Chen ◽  
Siqiaozhi Li ◽  
Xin Liao ◽  
...  

As a severe neurological deficit, intracerebral hemorrhage (ICH) is associated with overwhelming mortality. Subsequent oxidative stress and neurological dysfunction are likely to cause secondary brain injury. Therefore, this study sought to define the role of Krüppel-like factor 6 (KLF6) and underlying mechanism in oxidative stress and neurological dysfunction following ICH. An in vivo model of ICH was established in rats by injection of autologous blood, and an in vitro ICH cell model was developed in hippocampal neurons by oxyhemoglobin (OxyHb) exposure. Next, gain- and loss-of-function assays were performed in vivo and in vitro to clarify the effect of KLF6 on neurological dysfunction and oxidative stress in ICH rats and neuronal apoptosis and mitochondrial reactive oxygen species in OxyHb-induced hippocampal neurons. KLF6, nuclear factor erythroid 2–related factor 2 (Nrf2), and heme oxygenase 1 (HO-1) were highly expressed in hippocampal tissues of ICH rats, whereas sirtuin 5 (SIRT5) presented a poor expression. Mechanistically, KLF6 bound to the SIRT5 promoter and transcriptionally repressed SIRT5 to activate the Nrf2/HO-1 signaling pathway. KLF6 silencing alleviated neurological dysfunction and oxidative stress in ICH rats and diminished oxidative stress and neuronal apoptosis in OxyHb-induced neurons, whereas SIRT5 overexpression negated its effect. To sum up, KLF6 silencing elevated SIRT5 expression to inactivate the Nrf2/HO-1 signaling pathway, thus attenuating oxidative stress and neurological dysfunction after ICH.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yuyuan Zhang ◽  
Mengguo Han ◽  
Xiaoxue Sun ◽  
Guojun Gao ◽  
Guoying Yu ◽  
...  

The abnormal neurites have long been regarded as the main player contributing to the poor outcome of patients with subarachnoid hemorrhage (SAH). (-)-Eigallocatechin-3-gallate (EGCG), the major biological component of tea catechin, exhibited strong neuroprotective effects against central nervous system diseases; however, the role of EGCG-mediated neurite outgrowth after SAH has not been delineated. Here, the effect of reactive oxygen species (ROS)/integrin β1/FAK/p38 pathway on neurite outgrowth was investigated. As expected, oxyhemoglobin- (OxyHb-) induced excessive ROS level was significantly reduced by EGCG as well as antioxidant N-acetyl-l-cysteine (NAC). Consequently, the expression of integrin β1 was significantly inhibited by EGCG and NAC. Meanwhile, EGCG significantly inhibited the overexpression of phosphorylated FAK and p38 to basal level after SAH. As a result, the abnormal neurites and cell injury were rescued by EGCG, which eventually increased energy generation and neurological score after SAH. These results suggested that EGCG promoted neurite outgrowth after SAH by inhibition of ROS/integrin β1/FAK/p38 signaling pathway. Therefore, EGCG might be a new pharmacological agent that targets neurite outgrowth in SAH therapy.


2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Huajie Li ◽  
Liping Cao ◽  
Yi Ren ◽  
Ying Jiang ◽  
Wei Xie ◽  
...  

This study aimed to validate whether glucagon-like peptide-1 receptor (GLP-1R) / cyclic adenosine monophosphate (cAMP) / protein kinase (PKA) / insulin-degrading enzyme (IDE) signaling pathway was associated with neuronal apoptosis. We developed an animal model presenting both Alzheimer’s disease (AD) and type 2 diabetes (T2D), by crossing APP/PS1 mice (AD model) with streptozotocin (STZ)-treated mice (a T2D model). Neuronal apoptosis was detected by TUNEL staining and the expression levels of apoptosis-related proteins were examined by Western blotting. The viability of PC12 cells was analyzed by MTT assay and apoptosis of PC12 cells was detected by flow cytometry. The mRNA expression level was detected by qRT-PCR. T2D contributes to AD progress by prompting neuronal apoptosis and increasing expression of pro-apoptotic protein. β-Amyloid peptide1–42 (Aβ1–42) was shown to exert effects on inhibiting cell viability and prompting cell apoptosis of PC12 cells. However, GLP-1R agonist geniposide (Gen) significantly reversed them, exerting a protective role on PC12 cells. And IDE antagonist bacitracin (Bac) markedly reversed the protective effects of Gen on Aβ1–42-treated PC12 cells. Besides, Gen significantly reversed the effects of Aβ1–42 treatment on IDE expression, and the inhibitor of cAMP/PKA signaling pathway markedly reversed the effects of Gen on IDE expression level in Aβ1–42-treated PC12 cells. In conclusion, GLP-1R regulates cell growth, at least partially, through regulating cAMP/PKA/IDE signaling pathway in Aβ1–42-treated PC12 cells.


2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Zhi Zhao ◽  
Xiu-Song Dai ◽  
Zhi-Yan Wang ◽  
Zheng-Qi Bao ◽  
Jian-Zhong Guan

Abstract Objective: Inflammation is closely implicated in the process of osteoarthritis (OA) and affects disease progression and pain. Herein, the present study explored the effect of microRNA-26a (miR-26a) on the synovial inflammation and cartilage injury in OA, with the involvement with the NF-κB signaling pathway. Methods: Rat models of OA were established by anterior cruciate ligament transection, which were then treated with miR-26a mimics/inhibitors or BMS-345541 (inhibitor of NF-κB pathway). The expression of miR-26a and activator proteins of NF-κB pathway (P-IκBα and P-P65) in synovial tissues was determined. Hematoxylin-eosin (HE) staining was adopted to observe pathological changes of knee joints, synovial tissues, and cartilage of femoral condyle. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining was used to detect the apoptosis of synoviocytes and chondrocytes. Results: Poorly expressed miR-26a and increased protein levels of P-IκBα and P-P65 were identified in synovial tissues of OA rats. Besides, OA rats showed obvious synovial tissue hyperplasia, inflammation and cartilage injury of femoral condyle, as well as increased inflammation and cartilage injury scores, and apoptosis of synoviocytes and chondrocytes. In response to miR-26a mimics, protein levels of P-IκBα and P-P65 were reduced; meanwhile, synovial tissue hyperplasia, inflammation and cartilage injury of femoral condyle were ameliorated, with decreased inflammation and cartilage injury scores, and apoptosis of synoviocytes and chondrocytes. Conclusion: MiR-26a suppressed the activation of the NF-κB signaling pathway, by which mechanism the synovial inflammation and cartilage injury in OA rats were alleviated.


2019 ◽  
Vol 9 (11) ◽  
pp. 316 ◽  
Author(s):  
Neha Madangarli ◽  
Frederick Bonsack ◽  
Rajaneekar Dasari ◽  
Sangeetha Sukumari–Ramesh

Intracerebral hemorrhage (ICH) is a subtype of stroke which is associated with the highest mortality and morbidity rates of all strokes. Although it is a major public health problem, there is no effective treatment for ICH. As a consequence of ICH, various blood components accumulate in the brain parenchyma and are responsible for much of the secondary brain damage and ICH-induced neurological deficits. Therefore, the strategies that could attenuate the blood component-induced neurotoxicity and improve hematoma resolution are highly needed. The present article provides an overview of blood-induced brain injury after ICH and emphasizes the need to conduct further studies elucidating the mechanisms of hematoma resolution after ICH.


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Huihui Wu ◽  
Nini Yu ◽  
Xia Wang ◽  
Yina Yang ◽  
Hui Liang

Abstract Background Neuronal apoptosis plays a critical event in the pathogenesis of early brain injury after subarachnoid hemorrhage (SAH). This study investigated the roles of Tauroursodeoxycholic acid (TUDCA) in attenuate neuronal apoptosis and underlying mechanisms after SAH. Methods Sprague–Dawley rats were subjected to model of SAH and TUDCA was administered via the internal carotid injection. Small interfering RNA (siRNA) for TGR5 were administered through intracerebroventricular injection 48 h before SAH. Neurological scores, brain water content, Western blot, TUNEL staining and immunofluorescence staining were evaluated. Results TUDCA alleviated brain water content and improved neurological scores at 24 h and 72 h after SAH. TUDCA administration prevented the reduction of SIRT3 and BCL-2 expressions, as well as the increase of BAX and cleaved caspase-3.Endogenous TGR5 expression were upregulated after SAH and treatment with TGR5 siRNA exacerbated neurological outcomes after SAH and the protective effects of TUDCA at 24 h after SAH were also abolished by TGR5 siRNA. Conclusions Our findings demonstrate that TUDCA could attenuated neuronal apoptosis and improve neurological functions through TGR5/ SIRT3 signaling pathway after SAH. TUDCA may be an attractive candidate for anti-apoptosis treatment in SAH.


Sign in / Sign up

Export Citation Format

Share Document