scholarly journals Acetylation Profiles in the Metabolic Process of Glioma-Associated Seizures

2021 ◽  
Vol 12 ◽  
Author(s):  
Ya-Wen Xu ◽  
Peng Lin ◽  
Shu-Fa Zheng ◽  
Wen Huang ◽  
Zhang-Ya Lin ◽  
...  

Objective: We test the hypothesis that lysine acetylation is involved in the metabolic process of glioma-associated seizures (GAS).Methods: We used label-free mass spectrometry-based quantitative proteomics to quantify dynamic changes of protein acetylation between gliomas with seizure (CA1 group) and gliomas without seizure (CA2 group). Furthermore, differences of acetyltransferase and deacetylase expression between CA1 and CA2 groups were performed by a quantitative proteomic study. We further classified acetylated proteins into groups according to cell component, molecular function, and biological process. In addition, metabolic pathways and protein interaction networks were analyzed. Regulated acetyltransferases and acetylated profiles were validated by PRM and Western blot.Results: We detected 169 downregulated lysine acetylation sites of 134 proteins and 39 upregulated lysine acetylation sites of 35 proteins in glioma with seizures based on acetylome. We detected 407 regulated proteins by proteomics, from which ACAT2 and ACAA2 were the differentially regulated enzymes in the acetylation of GAS. According to the KEGG analysis, the upregulated acetylated proteins within the PPIs were mapped to pathways involved in the TCA cycle, oxidative phosphorylation, biosynthesis of amino acids, and carbon metabolism. The downregulated acetylated proteins within the PPIs were mapped to pathways involved in fatty acid metabolism, oxidative phosphorylation, TCA cycle, and necroptosis. Regulated ACAT2 expression and acetylated profiles were validated by PRM and Western blot.Conclusions: The data support the hypothesis that regulated protein acetylation is involved in the metabolic process of GAS, which may be induced by acetyl-CoA acetyltransferases.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1902-1902
Author(s):  
Dominik Dytfeld ◽  
Malathi Kandarpa ◽  
John R Strahler ◽  
Dattatreya Mellacheruvu ◽  
Suchitra Subramani ◽  
...  

Abstract Abstract 1902 Introduction: Multiple myeloma (MM) remains mostly incurable. Novel therapies have improved response rates, which are now reaching 100%. More importantly, number of recent studies showed that the depth of response, e.g. achievement of at least 90% reduction of the disease (≥VGPR) is associated with longer disease control. Therefore, improving VGPR rates and establishing predictors of VGPR to a given regimen may be an important clinical goal. High throughput quantitative proteomics may offer greater insight into the actual biology of the malignant cell than genome analysis and therefore, may be more useful in the development of personalized therapy. The objective of this study is to establish a proteomic signature predicting achievement of at least VGPR to initial treatment with bortezomib (Velcade®), pegylated liposomal doxorubicin, and dexamethasone (VDD). We previously reported preliminary proteomic profile of malignant plasma cells (PCs) obtained from a set of naïve MM pts enrolled in the VDD trial (Dytfeld et al., ASH 2009). Here we present the results of differential proteomic analysis of MM PCs of all available samples from the frontline VDD study (≥VGPR vs. <VGPR) using two independent and complementary quantitative proteomic platforms. We also compared the proteomic profile with gene expression data. Preliminary validation of the biomarkers of response prediction is presented. Methods: PCs were acquired from pre-treatment bone marrow specimens after obtaining informed consent from patients (pts), and were thereafter enriched with a RosetteSep® negative selection kit. Quantitative proteomic analysis of PCs from 17 naïve pts with MM from the VDD study was performed using iTRAQ approach in 8-plex variant. To increase confidence of analysis, label-free quantitative proteomics (LF) based on spectra counting was conducted on PCs from 12 pts. In iTRAQ experiments, proteins were processed with reagents according to the manufacturer's protocol followed by SCX fractionation and LC-MS/MS analysis (4800 Plus MALDI TOF/TOF). Peptides from the MM1S cell line were used as a reference. The data were analyzed using ProteinPilot™. For LF analysis, proteins were fractionated before trypsin digestion on Bis-Tris-Gel and subsequently run on LC-ESI-MS/MS on a linear trap mass spectrometer (LTQ Orbitrap). A database search was carried out using X!Tandem followed by Trans-proteomic Pipeline. At least 1.5-fold difference in expression in both platforms was used as a cut-off value. To correlate proteomics with gene expression of dysregulated proteins of interest, mRNA levels were analyzed by quantitative real time PCR (RT-PCR). Validation of proteomic findings on proteins of interest was performed using Western Blot. Results: We identified a total of 894 proteins in 3 iTRAQ experiments with high confidence (FDR<1%) and 1058 proteins by LF approach. Based on iTRAQ analysis, 20 proteins were found up-regulated in samples from pts with ≥VGPR (8 out of 17 pts) while 14 were down- regulated. Using LF approach, 284 proteins were elevated in the ≥VGPR group (6 out of 12 pts) while 315 proteins were down-regulated. Both iTRAQ and LF methods showed 15 differentially expressed proteins in common and 14 of them showed identical up or down trends. Interestingly, among differentially expressed proteins, there were proteins involved in proteasome activation (PSME1 and TXNL1), protection against oxidative stress (TXN and TXNDC5), glucose and cholesterol metabolism (TP1, APOA1 and ACAT1) and apoptosis (MX1). RT-PCR performed on a subset of genes confirmed the trend in differential expression between pts with ≥VGPR and <VGPR for TXNDC5 and PSME1. No change in mRNA expression levels was observed in TXN, APOA1, TPI1 and MX1while the trend in expression was reversed for ACAT1. Western blot analysis performed to date validated differential expression of PSME1. Conclusions: We present patient-derived proteomic characteristics of MM cells using two independent proteomic platforms. As a proof of concept, analysis of PCs obtained from pts enrolled in the frontline VDD study shows differential expression of 34 proteins in pts who achieved ≥VGPR vs. pts with <VGPR. Correlation with gene expression and further validation and functional analysis are in progress. This study was supported by a grant from the Multiple Myeloma Research Foundation. Disclosures: Jakubowiak: Millennium, Celgene, Bristol-Myers Squibb, Johnson & Johnson Ortho-Centocor: Honoraria; Millennium, Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Millennium, Celgene, Centocor-Ortho Biotech: Speakers Bureau.


2020 ◽  
Author(s):  
Geng Li ◽  
Bin Zheng ◽  
Wei Zhao ◽  
Ting-Hu Ren ◽  
Xing-Hui Zhang ◽  
...  

Abstract Protein lysine acetylation (Kac) is an important post-translational modification present in both animal and plant cells. Here, we reported the results from a proteomic investigation of Kac in soybean leaves. We totally identified 3148 acetylation sites in 1538 proteins from three biological replicates, among 59 lysine acetylation sites in core histones, represents the largest acetylome dataset in plants to date. Gene Ontology (GO) functional analysis illustrated that most of the acetylated proteins involved in metabolic processes (include carboxylic acid metabolic process, oxoacid metabolic process, nucleoside metabolic process, nucleoside phosphate metabolic process, and ribose phosphate metabolic process). KEGG pathway enrichment showed Kac plays an important role in Photosynthesis, Carbon fixation in photosynthetic organisms and Citrate cycle (TCA cycle). Meanwhile we also find a total of 17 conserved Kac motifs. All together, our study not only provides the first global and most extensive lysine acetylation analysis in soybean leaves, but also suggest that lysine acetylation is play an important and unique role in plants.


2016 ◽  
Vol 113 (6) ◽  
pp. E782-E790 ◽  
Author(s):  
Karyn McFadden ◽  
Amy Y. Hafez ◽  
Rigel Kishton ◽  
Joshua E. Messinger ◽  
Pavel A. Nikitin ◽  
...  

Epstein–Barr virus (EBV) is an oncogenic herpesvirus that has been causally linked to the development of B-cell and epithelial malignancies. Early after infection, EBV induces a transient period of hyperproliferation that is suppressed by the activation of the DNA damage response and a G1/S-phase growth arrest. This growth arrest prevents long-term outgrowth of the majority of infected cells. We developed a method to isolate and characterize infected cells that arrest after this early burst of proliferation and integrated gene expression and metabolic profiling to gain a better understanding of the pathways that attenuate immortalization. We found that the arrested cells have a reduced level of mitochondrial respiration and a decrease in the expression of genes involved in the TCA cycle and oxidative phosphorylation. Indeed, the growth arrest in early infected cells could be rescued by supplementing the TCA cycle. Arrested cells were characterized by an increase in the expression of p53 pathway gene targets, including sestrins leading to activation of AMPK, a reduction in mTOR signaling, and, consequently, elevated autophagy that was important for cell survival. Autophagy was also critical to maintain early hyperproliferation during metabolic stress. Finally, in assessing the metabolic changes from early infection to long-term outgrowth, we found concomitant increases in glucose import and surface glucose transporter 1 (GLUT1) levels, leading to elevated glycolysis, oxidative phosphorylation, and suppression of basal autophagy. Our study demonstrates that oncogene-induced senescence triggered by a combination of metabolic and genotoxic stress acts as an intrinsic barrier to EBV-mediated transformation.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
D. G. Christensen ◽  
J. T. Baumgartner ◽  
X. Xie ◽  
K. M. Jew ◽  
N. Basisty ◽  
...  

ABSTRACTPosttranslational modification of a protein, either alone or in combination with other modifications, can control properties of that protein, such as enzymatic activity, localization, stability, or interactions with other molecules.N-ε-Lysine acetylation is one such modification that has gained attention in recent years, with a prevalence and significance that rival those of phosphorylation. This review will discuss the current state of the field in bacteria and some of the work in archaea, focusing on both mechanisms ofN-ε-lysine acetylation and methods to identify, quantify, and characterize specific acetyllysines. BacterialN-ε-lysine acetylation depends on both enzymatic and nonenzymatic mechanisms of acetylation, and recent work has shed light into the regulation of both mechanisms. Technological advances in mass spectrometry have allowed researchers to gain insight with greater biological context by both (i) analyzing samples either with stable isotope labeling workflows or using label-free protocols and (ii) determining the true extent of acetylation on a protein population through stoichiometry measurements. Identification of acetylated lysines through these methods has led to studies that probe the biological significance of acetylation. General and diverse approaches used to determine the effect of acetylation on a specific lysine will be covered.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4020-4020 ◽  
Author(s):  
Natalia Baran ◽  
Alessia Lodi ◽  
Shannon Renee Sweeney ◽  
Pandey Renu ◽  
Vinitha Mary Kuruvilla ◽  
...  

Abstract Adult T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy characterized by limited therapeutic options and a high rate of treatment failure due to chemoresistance. T-ALL is largely driven by activating NOTCH1 mutations, where oncogenic NOTCH1 facilitates glutamine oxidation, induces metabolic stress, and facilitates reliance on oxidative phosphorylation (OXPHOS)1. In other malignancies, the shift toward OXPHOS-dependent high-energy status is associated with acquired chemoresistance. In this study, we found that the novel inhibitor of mitochondrial complex I (OXPHOSi) IACS-0107592 has preclinical activity in NOTCH1-mutated T-ALL; we also characterize the cellular and metabolic responses to OXPHOS inhibition and propose that an OXPHOSi be incorporated into standard-of-care therapy to improve outcomes in patients harboring NOTCH1-mutated T-ALL. Exposure to IACS-010759 (0-370 nM) in vitro drastically reduced T-ALL viability, with EC50 ranging from 0.1-10 nM for cell lines (n=7) and from 13-60 nM for patient-derived xenograft (PDX)-derived and primary T-ALL cells (n=10) (Fig.1). Oral administration of IACS-010759 (7.5 mg/kg/day) significantly reduced leukemia burden and extended overall survival (p<0.0001) in two aggressive NOTCH1-mutated T-ALL PDX models and in a murine NOTCH1-driven T-ALL model (Fig.4). Addition of OXPHOS inhibitor to dexamethasone (X), vincristine (V), asparaginase (L), or a combination (VXL) led to additive/synergistic inhibition of cell proliferation in vitro and to doubling of overall survival in vivo (p<0.0001) (Fig.4). Metabolic characterization confirmed that IACS-010759 caused striking dose-dependent decreases in basal and maximal oxygen consumption rates (OCR) and ATP and NADH production in T-ALL cell lines and primary T-ALL samples (p<0.001; Fig.2). Further, pretreatment with V, X, or L shifted T-ALL cell metabolism toward OXPHOS, increasing significantly the OCR that was effectively inhibited by IACS-010759. Pharmacological inhibition of complex I with IACS-010759, similar to knockout of complex I subunit NDUFS4 using CRISPR-CAS9, induced catastrophic changes in mitochondria, with induction of mitochondrial reactive oxygen species (ROS), DNA damage, and activation of the compensatory mTOR pathway. OXPHOS inhibition altered cellular energy homeostasis through reduction of TCA cycle intermediates; decreased glutathione level (by UPLC-MS/MS; p<0.0001) with ROS induction (Fig.3); and depleted the pool of intracellular nucleotides, affecting DNA and RNA synthesis (Fig.2C). Stable isotope-resolved metabolomics (SIRM) flux analysis showed that IACS-010759 (30 nM at 24 h) significantly decreased the flux of glucose through the TCA cycle and redirected it toward lactate production and increased utilization of glutamine for fueling the TCA cycle, in particular through reductive metabolism, uncovering reliance on glutaminolysis as an additional therapeutic target. Consistent with this was the finding that combined OXPHOSi with glutaminase inhibitor CB-839 caused additive reduction of viability of T-ALL cells lines and primary T-ALL cells in vitro (Fig.2), decreased tumor burden (p<0.02), and increased survival in a T-ALL PDX model (p<0.01). This was supported by IACS-induced reduction of tumor burden in a NOTCH1-mutated GLS fl/fl murine model upon tamoxifen-induced GLS knockout (p<0.01). In summary, our findings indicate that OXPHOSi, alone and particularly in combination with standard chemotherapy and GLS inhibition, constitutes a novel therapeutic modality that targets a unique metabolic vulnerability of NOTCH1-mutated T-ALL cells. References:Kishton RJ, Barnes CE, Nichols AG at al., AMPK Is Essential to Balance Glycolysis and Mitochondrial Metabolism to Control T-ALL Cell Stress and Survival, Cell Metabolism, 2016, 23(4):649-62Molina JR, Sun Y, Protopopova M et al., An inhibitor of oxidative phosphorylation exploits cancer vulnerability, Nat Med, 2018, 24: 1036-1046 Disclosures Lorenzi: NIH: Patents & Royalties; Erytech Pharma: Consultancy. Konopleva:Stemline Therapeutics: Research Funding.


2015 ◽  
Vol 33 (7_suppl) ◽  
pp. 493-493
Author(s):  
Denise R. Minton ◽  
Leiping Fu ◽  
Qiuying Chen ◽  
Brian D. Robinson ◽  
Steven S. Gross ◽  
...  

493 Background: Clear cell renal cell carcinoma (ccRCC) is characterized by altered metabolism, including a shift from oxidative phosphorylation to glycolysis and lactate production (the Warburg effect). Here we evaluate human ccRCC tissue samples and kidney samples from the TRACK transgenic mouse model of ccRCC (that express constitutively active HIF1α in proximal tubule cells) [1] to characterize the effect of HIF1α on the renal cancer metabolome. Methods: We performed untargeted metabolomics analyses of 12 primary human ccRCCs and 10 TRACK kidney samples. In addition, we analyzed human ccRCC mRNA expression (Oncomine database) and performed RNA sequencing (RNAseq) on six TRACK kidney samples for expression of HIF1α target genes that regulate metabolism. Results: Analysis of RNA expression of HIF1α target genes in human ccRCCs and TRACK kidneys identified significantly increased transcript levels of genes responsible for mediating glucose uptake and glycolysis and suppressing the activity of the TCA cycle and mitochondrial respiration, including glucose transporter 1 (SLC2A1), glycolytic enzyme phosphofructokinase (PFKP), TCA cycle inhibitor pyruvate dehydrogenase kinase (PDK1), oxidative phosphorylation inhibitor NADH dehydrogenase 1 alpha subcomplex, 4-like 2 (NDUFA4L2), and lactate transporter (SLC16A3). Metabolomics analysis similarly demonstrated a significant increase in glycolytic intermediates and lactate, in association with a decrease in metabolites of the TCA cycle. Conclusions: These studies show that in both human ccRCC and TRACK mice HIF1α mediates a metabolic switch to aerobic glycolysis, implicating HIF1α in RCC tumorigenesis. Additionally, these data suggest that targeting the metabolic pathway (or inhibition of HIF1α) is a novel approach to treat ccRCCs.


2021 ◽  
Author(s):  
Tairen Chen ◽  
Mongjing Wu ◽  
Yuting Dong ◽  
Bin Kong ◽  
Yufang Cai ◽  
...  

Abstract Dihydrotestosterone (DHT) is a main androgen in the human body. Previous reports have shown that DHT can affect the proliferation, apoptosis and estrogen and progesterone secretion of ovarian granulosa cells (GCs). An imbalance in DHT secretion leads to GC dysfunction and follicular development disorder.Therefore, exploring the influence of DHT on GCs is necessary. The purpose of this study was to analyze the effect of DHT on GCs through label-free quantitative proteomics (LFQP). After primary cultured rat GCs were treated with DHT (10-8 mol/L), the effect of DHT on GCs was analyzed by LFQP, and some of the differentially expressed proteins (DEPs) were verified by western blotting.A total of 6124.0 proteins were identified, of which 4496.0 were quantifiable. Compared with the control group, 28 proteins were upregulated and 10 were downregulated after DHT intervention. The subcellular localization of DEPs indicates that DHT is involved in the proliferation, migration, molding and metabolism of GCs. Gene Ontology (GO) revealed that DHT downregulated the oxygen transport capacity and oxygen-binding protein of GCs. Orthologous Groups of proteins (COG/KOG) showed that DHT had an important effect on the survival, growth and apoptosis of GCs. Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that DHT promotes metabolism, amino acid degradation, chemical carcinogenesis, platelet activation and vasoconstriction in GCs. The western blot results were consistent with the proteomics results. Mark3 and Mre11a are DEPs that were upregulated, and Fth1 and Nqo1 were downregulated, which indicated that DHT could promote the proliferation of GCs.This study comprehensively analyzes the impact of DHT on GCs through LFQP and provides clues for further research.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Li Xiao ◽  
Qiannan Hu ◽  
Yanshuang Peng ◽  
Kaiyue Zheng ◽  
Ting Zhang ◽  
...  

Abstract Background Glucose metabolism in cancer associated fibroblasts (CAFs) within the tumor microenvironment is a material and energy source for tumorigenesis and tumor development. However, the characteristics and important regulatory mechanisms of glucose metabolism in fibroblasts associated with oral squamous cell carcinoma (OSCC) are still unknown. Methods We successfully isolated, cultured, purified and identified CAFs and normal fibroblasts (NFs). Cell culture, immunohistochemistry (IHC) and CCK8, flow cytometry, Seahorse XF Analyzer, MitoTracker assay, western blotting (WB), transmission electron microscope, Quantitative real-time PCR (qPCR), immunofluorescence (IF), and Label-free quantitative proteomics assay, animal xenograft model studies and statistical analysis were applied in this study. Results We demonstrated that the proliferation activity of CAFs was significantly enhanced as compared to NFs, while the apoptosis rate was significantly decreased. CAFs in OSCC preferentially use oxidative phosphorylation (OXPHOS) rather than glycolysis. Moreover, CAFs showed stronger maximal respiration, a larger substantial mitochondrial spare respiratory capacity (SRC) and higher adenosine triphosphate (ATP) production capacity than NFs. The results of mitotracker green fluorescence staining showed that compared with NFs, CAFs exhibited stronger green fluorescence. The results of WB showed the expression level of Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) obviously increased in CAFs compared to NFs. These results confirmed that CAFs have greater mitochondrial activity and function than NFs. Furthermore, Label-free quantitative proteomics assays showed that both ATP synthase subunit O (ATP5O) and tumor necrosis factor receptor-associated protein 1 (TRAP1) are important differentially expressed proteins in the mitochondria of CAFs/NFs. Overexpression of TRAP1 in CAFs increased basal oxygen consumption rate (OCR), maximal respiration, ATP production and SRC. In vivo, overexpression TRAP1 expression in CAFs suppress tumor growth. Conclusion Taken together, the results indicated that TRAP1 is an important regulatory molecule of CAFs glucose metabolism and promotes OSCC progression by regulating the OXPHOS of CAFs.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Blanca I. Aldana ◽  
Yu Zhang ◽  
Pia Jensen ◽  
Abinaya Chandrasekaran ◽  
Sofie K. Christensen ◽  
...  

Abstract Frontotemporal dementia (FTD) is amongst the most prevalent early onset dementias and even though it is clinically, pathologically and genetically heterogeneous, a crucial involvement of metabolic perturbations in FTD pathology is being recognized. However, changes in metabolism at the cellular level, implicated in FTD and in neurodegeneration in general, are still poorly understood. Here we generate induced human pluripotent stem cells (hiPSCs) from patients carrying mutations in CHMP2B (FTD3) and isogenic controls generated via CRISPR/Cas9 gene editing with subsequent neuronal and glial differentiation and characterization. FTD3 neurons show a dysregulation of glutamate-glutamine related metabolic pathways mapped by 13C-labelling coupled to mass spectrometry. FTD3 astrocytes show increased uptake of glutamate whilst glutamate metabolism is largely maintained. Using quantitative proteomics and live-cell metabolic analyses, we elucidate molecular determinants and functional alterations of neuronal and glial energy metabolism in FTD3. Importantly, correction of the mutations rescues such pathological phenotypes. Notably, these findings implicate dysregulation of key enzymes crucial for glutamate-glutamine homeostasis in FTD3 pathogenesis which may underlie vulnerability to neurodegeneration. Graphical abstract Neurons derived from human induced pluripotent stem cells (hiPSCs) of patients carrying mutations in CHMP2B (FTD3) display major metabolic alterations compared to CRISPR/Cas9 generated isogenic controls. Using quantitative proteomics, 13C-labelling coupled to mass spectrometry metabolic mapping and seahorse analyses, molecular determinants and functional alterations of neuronal and astrocytic energy metabolism in FTD3 were characterized. Our findings implicate dysregulation of glutamate-glutamine homeostasis in FTD3 pathogenesis. In addition, FTD3 neurons recapitulate glucose hypometabolism observed in FTD patient brains. The impaired mitochondria function found here is concordant with disturbed TCA cycle activity and decreased glycolysis in FTD3 neurons. FTD3 neuronal glutamine hypermetabolism is associated with up-regulation of PAG expression and, possibly, ROS production. Distinct compartments of glutamate metabolism can be suggested for the FTD3 neurons. Endogenous glutamate generated from glutamine via PAG may enter the TCA cycle via AAT (left side of neuron) while exogenous glutamate taken up from the extracellular space may be incorporated into the TCA cycle via GDH (right side of the neuron) FTD3 astrocytic glutamate uptake is upregulated whilst glutamate metabolism is largely maintained. Finally, pharmacological reversal of glutamate hypometabolism manifesting from decreased GDH expression should be explored as a novel therapeutic intervention for treating FTD3.


Sign in / Sign up

Export Citation Format

Share Document