scholarly journals Caffeine and Parkinson’s Disease: Multiple Benefits and Emerging Mechanisms

2020 ◽  
Vol 14 ◽  
Author(s):  
Xiangpeng Ren ◽  
Jiang-Fan Chen

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, characterized by dopaminergic neurodegeneration, motor impairment and non-motor symptoms. Epidemiological and experimental investigations into potential risk factors have firmly established that dietary factor caffeine, the most-widely consumed psychoactive substance, may exerts not only neuroprotective but a motor and non-motor (cognitive) benefits in PD. These multi-benefits of caffeine in PD are supported by convergence of epidemiological and animal evidence. At least six large prospective epidemiological studies have firmly established a relationship between increased caffeine consumption and decreased risk of developing PD. In addition, animal studies have also demonstrated that caffeine confers neuroprotection against dopaminergic neurodegeneration using PD models of mitochondrial toxins (MPTP, 6-OHDA, and rotenone) and expression of α-synuclein (α-Syn). While caffeine has complex pharmacological profiles, studies with genetic knockout mice have clearly revealed that caffeine’s action is largely mediated by the brain adenosine A2A receptor (A2AR) and confer neuroprotection by modulating neuroinflammation and excitotoxicity and mitochondrial function. Interestingly, recent studies have highlighted emerging new mechanisms including caffeine modulation of α-Syn degradation with enhanced autophagy and caffeine modulation of gut microbiota and gut-brain axis in PD models. Importantly, since the first clinical trial in 2003, United States FDA has finally approved clinical use of the A2AR antagonist istradefylline for the treatment of PD with OFF-time in Sept. 2019. To realize therapeutic potential of caffeine in PD, genetic study of caffeine and risk genes in human population may identify useful pharmacogenetic markers for predicting individual responses to caffeine in PD clinical trials and thus offer a unique opportunity for “personalized medicine” in PD.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Noelia Granado ◽  
Sara Ares-Santos ◽  
Rosario Moratalla

Parkinson's disease (PD) is a neurodegenerative disorder predominantly affecting the elderly. The aetiology of the disease is not known, but age and environmental factors play an important role. Although more than a dozen gene mutations associated with familial forms of Parkinson's disease have been described, fewer than 10% of all cases can be explained by genetic abnormalities. The molecular basis of Parkinson's disease is the loss of dopamine in the basal ganglia (caudate/putamen) due to the degeneration of dopaminergic neurons in the substantia nigra, which leads to the motor impairment characteristic of the disease. Methamphetamine is the second most widely used illicit drug in the world. In rodents, methamphetamine exposure damages dopaminergic neurons in the substantia nigra, resulting in a significant loss of dopamine in the striatum. Biochemical and neuroimaging studies in human methamphetamine users have shown decreased levels of dopamine and dopamine transporter as well as prominent microglial activation in the striatum and other areas of the brain, changes similar to those observed in PD patients. Consistent with these similarities, recent epidemiological studies have shown that methamphetamine users are almost twice as likely as non-users to develop PD, despite the fact that methamphetamine abuse and PD have distinct symptomatic profiles.


2021 ◽  
Author(s):  
Merry Chen ◽  
Julie Vincent ◽  
Alexis Ezeanii ◽  
Saurabh Wakade ◽  
Shobha Yerigenahally ◽  
...  

Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by progressive motor decline and the aggregation of α-synuclein protein. Growing evidence suggests that α-synuclein aggregates may spread from neurons of the digestive tract to the brain in a prion-like manner. While rodent models have recapitulated gut-to-brain α-synuclein transmission, animal models that are amenable to high-throughput investigations are needed to facilitate the discovery of disease mechanisms. Here we describe the first C. elegans models in which feeding with α-synuclein pre-formed fibrils (PFFs) induced prion-like dopamine neuron degeneration and seeding of aggregation of human α-synuclein expressed in the host. PFF acceleration of α-synuclein aggregation in C. elegans muscle cells was associated with a progressive motor deficit, whereas feeding with α-synuclein monomer produced much milder effects. RNAi-mediated knockdown of the C. elegans syndecan sdn-1, and enzymes involved in heparan sulfate proteoglycan biosynthesis, afforded protection from PFF-induced seeding of aggregation and toxicity, as well as dopaminergic neurodegeneration. This work offers new models by which to investigate gut-derived α-synuclein spreading and propagation of disease.


2019 ◽  
Vol 20 (7) ◽  
pp. 1538 ◽  
Author(s):  
Hayate Javed ◽  
Sheikh Azimullah ◽  
MF Meeran ◽  
Suraiya Ansari ◽  
Shreesh Ojha

Parkinson’s disease (PD), a multifactorial movement disorder that involves progressive degeneration of the nigrostriatal system affecting the movement ability of the patient. Oxidative stress and neuroinflammation both are shown to be involved in the etiopathogenesis of PD. The aim of this study was to evaluate the therapeutic potential of thymol, a dietary monoterpene phenol in rotenone (ROT)-induced neurodegeneration in rats that precisely mimics PD in humans. Male Wistar rats were injected ROT at a dose of 2.5 mg/kg body weight for 4 weeks, to induce PD. Thymol was co-administered for 4 weeks at a dose of 50 mg/kg body weight, 30 min prior to ROT injection. The markers of dopaminergic neurodegeneration, oxidative stress and inflammation were estimated using biochemical assays, enzyme-linked immunosorbent assay, western blotting and immunocytochemistry. ROT challenge increased the oxidative stress markers, inflammatory enzymes and cytokines as well as caused significant damage to nigrostriatal dopaminergic system of the brain. Thymol treatment in ROT challenged rats appears to significantly attenuate dopaminergic neuronal loss, oxidative stress and inflammation. The present study showed protective effects of thymol in ROT-induced neurotoxicity and neurodegeneration mediated by preservation of endogenous antioxidant defense networks and attenuation of inflammatory mediators including cytokines and enzymes.


2020 ◽  
Vol 47 (4) ◽  
pp. 405-414
Author(s):  
Beverley Chow ◽  
Florin Feloiu ◽  
Assunta Berardocco ◽  
David Ceglie ◽  
Shanker Nesathurai

BACKGROUND: Parkinson’s disease (PD) is a progressive neurodegenerative disorder with manifestations such as tremors, rigidity and bradykinesia. OBJECTIVE: The objective of this study was to evaluate the efficacy of outpatient multidisciplinary rehabilitation. METHODS: 179 patients participated in the six-week program. The following outcomes were measured: Timed Up and Go (TUG), sit to stand five times (STSx5) and in 30 seconds (STS30), six minute walk distance (6MWD) and gait velocity (6MWV), MOCA, bilateral grip strength, 360-degree turn (360 R, 360 L) and bilateral nine hole peg test. Pre- and post- data was analyzed via paired t-tests. Multiple regression was used to determine age- or gender-affected outcomes. RESULTS: Patients showed a statistically significant improvement (p < 0.05) in all outcomes. Mean TUG improved by 1.63 seconds (s), STSx5 by 4.19s, STS30 by 2.37 repetitions, 6MWD by 66.8 metres, 6MWV by 0.15 m/s, MOCA by 1.50 points, 360 R by 1.17s, 360 L by 1.60s, Grip R by 0.78 kg, Grip L by 0.95 kg, 9HP R by 1.71s and 9HP L by 1.58s. Gender had no influence. Age was a statistically significant predictor in STSx5 and 6MW. CONCLUSIONS: An outpatient multidisciplinary program successfully decreased motor impairment and increased overall functional independence in PD.


2017 ◽  
Vol 114 (15) ◽  
pp. 3999-4004 ◽  
Author(s):  
Athanasios D. Spathis ◽  
Xenophon Asvos ◽  
Despina Ziavra ◽  
Theodoros Karampelas ◽  
Stavros Topouzis ◽  
...  

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra and the gradual depletion of dopamine (DA). Current treatments replenish the DA deficit and improve symptoms but induce dyskinesias over time, and neuroprotective therapies are nonexistent. Here we report that Nuclear receptor-related 1 (Nurr1):Retinoid X receptor α (RXRα) activation has a double therapeutic potential for PD, offering both neuroprotective and symptomatic improvement. We designed BRF110, a unique in vivo active Nurr1:RXRα-selective lead molecule, which prevents DAergic neuron demise and striatal DAergic denervation in vivo against PD-causing toxins in a Nurr1-dependent manner. BRF110 also protects against PD-related genetic mutations in patient induced pluripotent stem cell (iPSC)-derived DAergic neurons and a genetic mouse PD model. Remarkably, besides neuroprotection, BRF110 up-regulates tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase (AADC), and GTP cyclohydrolase I (GCH1) transcription; increases striatal DA in vivo; and has symptomatic efficacy in two postneurodegeneration PD models, without inducing dyskinesias on chronic daily treatment. The combined neuroprotective and symptomatic effects of BRF110 identify Nurr1:RXRα activation as a potential monotherapeutic approach for PD.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Zeynep S. Agim ◽  
Jason R. Cannon

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. The majority of cases do not arise from purely genetic factors, implicating an important role of environmental factors in disease pathogenesis. Well-established environmental toxins important in PD include pesticides, herbicides, and heavy metals. However, many toxicants linked to PD and used in animal models are rarely encountered. In this context, other factors such as dietary components may represent daily exposures and have gained attention as disease modifiers. Severalin vitro, in vivo, and human epidemiological studies have found a variety of dietary factors that modify PD risk. Here, we critically review findings on association between dietary factors, including vitamins, flavonoids, calorie intake, caffeine, alcohol, and metals consumed via food and fatty acids and PD. We have also discussed key data on heterocyclic amines that are produced in high-temperature cooked meat, which is a new emerging field in the assessment of dietary factors in neurological diseases. While more research is clearly needed, significant evidence exists that specific dietary factors can modify PD risk.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Richard L. Jayaraj ◽  
Namasivayam Elangovan ◽  
Krishnan Manigandan ◽  
Sonu Singh ◽  
Shubha Shukla

Copious experimental and postmortem studies have shown that oxidative stress mediated degeneration of nigrostriatal dopaminergic neurons underlies Parkinson’s disease (PD) pathology. CNB-001, a novel pyrazole derivative of curcumin, has recently been reported to possess various neuroprotective properties. This study was designed to investigate the neuroprotective mechanism of CNB-001 in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD. Administration of MPTP (30 mg/kg for four consecutive days) exacerbated oxidative stress and motor impairment and reduced tyrosine hydroxylase (TH), dopamine transporter, and vesicular monoamine transporter 2 (VMAT2) expressions. Moreover, MPTP induced ultrastructural changes such as distorted cristae and mitochondrial enlargement in substantia nigra and striatum region. Pretreatment with CNB-001 (24 mg/kg) not only ameliorated behavioral anomalies but also synergistically enhanced monoamine transporter expressions and cosseted mitochondria by virtue of its antioxidant action. These findings support the neuroprotective property of CNB-001 which may have strong therapeutic potential for treatment of PD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jeann L. Sabino-Carvalho ◽  
James P. Fisher ◽  
Lauro C. Vianna

Parkinson’s disease (PD) is a common neurodegenerative disorder classically characterized by symptoms of motor impairment (e.g., tremor and rigidity), but also presenting with important non-motor impairments. There is evidence for the reduced activity of both the parasympathetic and sympathetic limbs of the autonomic nervous system at rest in PD. Moreover, inappropriate autonomic adjustments accompany exercise, which can lead to inadequate hemodynamic responses, the failure to match the metabolic demands of working skeletal muscle and exercise intolerance. The underlying mechanisms remain unclear, but relevant alterations in several discrete central regions (e.g., dorsal motor nucleus of the vagus nerve, intermediolateral cell column) have been identified. Herein, we critically evaluate the clinically significant and complex associations between the autonomic dysfunction, fatigue and exercise capacity in PD.


2021 ◽  
Vol 13 ◽  
Author(s):  
Upasana Ganguly ◽  
Sukhpal Singh ◽  
Soumya Pal ◽  
Suvarna Prasad ◽  
Bimal K. Agrawal ◽  
...  

Parkinson’s disease (PD) is the second most common neurodegenerative disorder of the elderly, presenting primarily with symptoms of motor impairment. The disease is diagnosed most commonly by clinical examination with a great degree of accuracy in specialized centers. However, in some cases, non-classical presentations occur when it may be difficult to distinguish the disease from other types of degenerative or non-degenerative movement disorders with overlapping symptoms. The diagnostic difficulty may also arise in patients at the early stage of PD. Thus, a biomarker could help clinicians circumvent such problems and help them monitor the improvement in disease pathology during anti-parkinsonian drug trials. This review first provides a brief overview of PD, emphasizing, in the process, the important role of α-synuclein in the pathogenesis of the disease. Various attempts made by the researchers to develop imaging, genetic, and various biochemical biomarkers for PD are then briefly reviewed to point out the absence of a definitive biomarker for this disorder. In view of the overwhelming importance of α-synuclein in the pathogenesis, a detailed analysis is then made of various studies to establish the biomarker potential of this protein in PD; these studies measured total α-synuclein, oligomeric, and post-translationally modified forms of α-synuclein in cerebrospinal fluid, blood (plasma, serum, erythrocytes, and circulating neuron-specific extracellular vesicles) and saliva in combination with certain other proteins. Multiple studies also examined the accumulation of α-synuclein in various forms in PD in the neural elements in the gut, submandibular glands, skin, and the retina. The measurements of the levels of certain forms of α-synuclein in some of these body fluids or their components or peripheral tissues hold a significant promise in establishing α-synuclein as a definitive biomarker for PD. However, many methodological issues related to detection and quantification of α-synuclein have to be resolved, and larger cross-sectional and follow-up studies with controls and patients of PD, parkinsonian disorders, and non-parkinsonian movement disorders are to be undertaken.


Sign in / Sign up

Export Citation Format

Share Document