scholarly journals Parsing Neurodynamic Information Streams to Estimate the Frequency, Magnitude and Duration of Team Uncertainty

2021 ◽  
Vol 15 ◽  
Author(s):  
Ronald H. Stevens ◽  
Trysha L. Galloway

Neurodynamic organizations are information-based abstractions, expressed in bits, of the structure of long duration EEG amplitude levels. Neurodynamic information (NI, the variable of neurodynamic organization) is thought to continually accumulate as EEG amplitudes cycle through periods of persistent activation and deactivation in response to the activities and uncertainties of teamwork. Here we show that (1) Neurodynamic information levels were a better predictor of uncertainty and novice and expert behaviors than were the EEG power levels from which NI was derived. (2) Spatial and temporal parsing of team NI from experienced submarine navigation and healthcare teams showed that it was composed of discrete peaks with durations up to 20–60 s, and identified the involvement of activated delta waves when precise motor control was needed. (3) The relationship between NI and EEG power was complex varying by brain regions, EEG frequencies, and global vs. local brain interactions. The presence of an organizational system of information that parallels the amplitude of EEG rhythms is important as it provides a greatly reduced data dimension while retaining the essential system features, i.e., linkages to higher scale behaviors that span temporal and spatial scales of teamwork. In this way the combinatorial explosion of EEG rhythmic variables at micro levels become compressed into an intermediate system of information and organization which links to macro-scale team and team member behaviors. These studies provide an avenue for understanding how complex organizations arise from the dynamics of underlying micro-scale variables. The study also has practical implications for how micro-scale variables might be better represented, both conceptually and in terms of parsimony, for training machines to recognize human behaviors that span scales of teams.

2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000599-000642
Author(s):  
David P. Fries ◽  
Stanislav Z. Ivanov ◽  
Heather Broadbent ◽  
Matthew Smith ◽  
George Steimle ◽  
...  

PCBMEMS, within rigid or flexible laminates is desirable for miniaturization of devices and systems and provide substantial flexibility in systems design. PCBMEMS is the combined insertion of mechanical, fluidic, optical and electronic functions into the PCB landscape, which permits a complex system on a board. This design, fabrication and construction approach allows lightweight, complex, and space efficient systems. PCBMEMS permits miniaturization to occur at two levels: at the micro scale with the embedding of microstructures in the substrate, and at the macro scale with the ability to flex the system across millimeter to centimeter lengths of real everyday objects. Using this path PCBMEMS can approach the creativity and complexity of natural made systems. The use of PCBMEMS can also provide a path toward ultra large systems with high resolution features. With the ability to provide from the very small to the very large, PCBMEMS has a unique place in systems development in that the same processing pathway can enable Microsystems and macro systems. Examples will be given where the technology has enabled devices, systems and packaging innovation across several spatial scales. Environmental, medical, portable, embedded, and sensor systems all can be realized using this design and fabrication toolbox. The approach is affordable and can be used from prototyping to production and even in educational efforts.


Author(s):  
Ron Stevens ◽  
Trysha Galloway

One of the more intriguing questions about teamwork is how macro-scale behaviors arise from the micro-scale neural dynamics of each team member. In this paper we show that the low-level dynamics of EEG band power, which themselves link poorly with behavioral teamwork measures can be transformed into information-based units of neurodynamic organization that link with macro-level constructs like experience and uncertainty. We suggest it is the frequency, magnitude and durations of the temporal organizations within the EEG band power that are important for linking to macro behaviors, and not exclusively EEG power levels. These studies provide an avenue for understanding how complex organizations arise from the dynamics of underlying micro-scale variables. The study also has practical implications for how micro-scale variables might be better represented, both conceptually and in terms of parsimony, for training machines to recognize human behaviors that span scales of teamwork.


2011 ◽  
Vol 2011 (DPC) ◽  
pp. 000597-000634
Author(s):  
David Fries ◽  
Liesl Hotaling ◽  
Geran Barton ◽  
Stan Ivanov ◽  
Michelle Janowiak ◽  
...  

PCB technology based on both rigid and flexible laminates is desirable for miniaturization of mobile devices and systems. The technology provides substantial flexibility in systems design. The ability to use flexible microsystems allows new sensing systems for mobile applications. Using this design, fabrication and construction approach allows lightweight, complex, and space efficient systems. Flex microsystems based on structurable, non-fiber filled laminates permits miniaturization to occur at two levels: at the micro scale with the embedding of microstructures in the substrate, and at the macro scale with the ability to flex the system across millimeter to centimeter lengths of real everyday objects. The macro scale systems further allows ultra large systems with high resolution features permitting novel sensor systems. Examples will be given where the technology has enabled devices, systems and packaging innovation across several spatial scales. Mobile (environmental, medical, portable, embedded) sensor systems all can be realized using this design and fabrication toolbox.


2005 ◽  
Vol 2 (5) ◽  
pp. 1923-1960 ◽  
Author(s):  
B. Zillgens ◽  
B. Merz ◽  
R. Kirnbauer ◽  
N. Tilch

Abstract. To understand how hydrological processes are related across different spatial scales, 201 rainfall runoff events were examined in three nested catchments of the upper river Saalach in the Austrian Alps. The Saalach basin is a nested catchment covering different spatial scales, from the micro-scale (Limberg, 0.07 km2), to the small-catchment scale (Rammern, 15.5 km2), and the meso-scale (Viehhofen, 150 km2). At these three scales two different event types could clearly be identified, depending on rainfall characteristics and initial baseflow level: (1) a unimodal event type with a quick rising and falling hydrograph, responding to short duration rainfall, and (2) a bimodal event type with a double peak hydrograph at the micro-scale and substantially increased flow values at the larger basins Rammern and Viehhofen, responding to long duration rainfall events. In all cases where a bimodal event was identified at the microscale, the hydrographs at the larger scales exhibited significantly attenuated recession behavior, quantified by recession constants. At all scales, the bimodal events are associated with considerably higher runoff volumes than the unimodal events. From the investigations at the headwater Limberg we came to the conclusion that the higher amount of runoff of bimodal events is due to the mobilization of subsurface flow processes. The analysis shows that the occurrence of the two event types is consistent over three orders of magnitude in area. This link between the scales means that the runoff behavior of the headwater may be used as an indicator of the runoff behavior of much larger areas.


2007 ◽  
Vol 11 (4) ◽  
pp. 1441-1454 ◽  
Author(s):  
B. Zillgens ◽  
B. Merz ◽  
R. Kirnbauer ◽  
N. Tilch

Abstract. To understand how hydrological processes are related across different spatial scales, 201 rainfall runoff events were examined in three nested catchments of the upper river Saalach in the Austrian Alps. The Saalach basin is a nested catchment covering different spatial scales, from the micro-scale (Limberg, 0.07 km²), to the small-catchment scale (Rammern, 15.5 km²), and the meso-scale (Viehhofen, 150 km²). At these three scales two different event types could clearly be identified, depending on rainfall characteristics and initial baseflow level: (1) a unimodal event type with a quick rising and falling hydrograph, responding to short duration rainfall, and (2) a bimodal event type with a double peak hydrograph at the micro-scale and substantially increased flow values at the larger basins Rammern and Viehhofen, responding to long duration rainfall events. In all cases where a bimodal event was identified at the microscale, the hydrographs at the larger scales exhibited significantly attenuated recession behavior, quantified by recession constants. At all scales, the bimodal events are associated with considerably higher runoff volumes than the unimodal events. From the investigations at the headwater Limberg we came to the conclusion that the higher amount of runoff of bimodal events is due to the mobilization of subsurface flow processes. The analysis shows that the occurrence of the two event types is consistent over three orders of magnitude in area. This link between the scales means that the runoff behavior of the headwater may be used as an indicator of the runoff behavior of much larger areas.


2018 ◽  
Vol 15 (5) ◽  
pp. 429-442 ◽  
Author(s):  
Nishant Verma ◽  
S. Natasha Beretvas ◽  
Belen Pascual ◽  
Joseph C. Masdeu ◽  
Mia K. Markey ◽  
...  

Background: Combining optimized cognitive (Alzheimer's Disease Assessment Scale- Cognitive subscale, ADAS-Cog) and atrophy markers of Alzheimer's disease for tracking progression in clinical trials may provide greater sensitivity than currently used methods, which have yielded negative results in multiple recent trials. Furthermore, it is critical to clarify the relationship among the subcomponents yielded by cognitive and imaging testing, to address the symptomatic and anatomical variability of Alzheimer's disease. Method: Using latent variable analysis, we thoroughly investigated the relationship between cognitive impairment, as assessed on the ADAS-Cog, and cerebral atrophy. A biomarker was developed for Alzheimer's clinical trials that combines cognitive and atrophy markers. Results: Atrophy within specific brain regions was found to be closely related with impairment in cognitive domains of memory, language, and praxis. The proposed biomarker showed significantly better sensitivity in tracking progression of cognitive impairment than the ADAS-Cog in simulated trials and a real world problem. The biomarker also improved the selection of MCI patients (78.8±4.9% specificity at 80% sensitivity) that will evolve to Alzheimer's disease for clinical trials. Conclusion: The proposed biomarker provides a boost to the efficacy of clinical trials focused in the mild cognitive impairment (MCI) stage by significantly improving the sensitivity to detect treatment effects and improving the selection of MCI patients that will evolve to Alzheimer’s disease.


2019 ◽  
Author(s):  
Valentina Escotet Espinoza

UNSTRUCTURED Over half of Americans report looking up health-related questions on the internet, including questions regarding their own ailments. The internet, in its vastness of information, provides a platform for patients to understand how to seek help and understand their condition. In most cases, this search for knowledge serves as a starting point to gather evidence that leads to a doctor’s appointment. However, in some cases, the person looking for information ends up tangled in an information web that perpetuates anxiety and further searches, without leading to a doctor’s appointment. The Internet can provide helpful and useful information; however, it can also be a tool for self-misdiagnosis. Said person craves the instant gratification the Internet provides when ‘googling’ – something one does not receive when having to wait for a doctor’s appointment or test results. Nevertheless, the Internet gives that instant response we demand in those moments of desperation. Cyberchondria, a term that has entered the medical lexicon in the 21st century after the advent of the internet, refers to the unfounded escalation of people’s concerns about their symptomatology based on search results and literature online. ‘Cyberchondriacs’ experience mistrust of medical experts, compulsion, reassurance seeking, and excessiveness. Their excessive online research about health can also be associated with unnecessary medical expenses, which primarily arise from anxiety, increased psychological distress, and worry. This vicious cycle of searching information and trying to explain current ailments derives into a quest for associating symptoms to diseases and further experiencing the other symptoms of said disease. This psychiatric disorder, known as somatization, was first introduced to the DSM-III in the 1980s. Somatization is a psycho-biological disorder where physical symptoms occur without any palpable organic cause. It is a disorder that has been renamed, discounted, and misdiagnosed from the beginning of the DSMs. Somatization triggers span many mental, emotional, and cultural aspects of human life. Our environment and social experiences can lay the blueprint for disorders to develop over time; an idea that is widely accepted for underlying psychiatric disorders such as depression and anxiety. The research is going in the right direction by exploring brain regions but needs to be expanded on from a sociocultural perspective. In this work, we explore the relationship between somatization disorder and the condition known as cyberchondria. First, we provide a background on each of the disorders, including their history and psychological perspective. Second, we proceed to explain the relationship between the two disorders, followed by a discussion on how this relationship has been studied in the scientific literature. Thirdly, we explain the problem that the relationship between these two disorders creates in society. Lastly, we propose a set of intervention aids and helpful resource prototypes that aim at resolving the problem. The proposed solutions ranged from a site-specific clinic teaching about cyberchondria to a digital design-coded chrome extension available to the public.


The environment has always been a central concept for archaeologists and, although it has been conceived in many ways, its role in archaeological explanation has fluctuated from a mere backdrop to human action, to a primary factor in the understanding of society and social change. Archaeology also has a unique position as its base of interest places it temporally between geological and ethnographic timescales, spatially between global and local dimensions, and epistemologically between empirical studies of environmental change and more heuristic studies of cultural practice. Drawing on data from across the globe at a variety of temporal and spatial scales, this volume resituates the way in which archaeologists use and apply the concept of the environment. Each chapter critically explores the potential for archaeological data and practice to contribute to modern environmental issues, including problems of climate change and environmental degradation. Overall the volume covers four basic themes: archaeological approaches to the way in which both scientists and locals conceive of the relationship between humans and their environment, applied environmental archaeology, the archaeology of disaster, and new interdisciplinary directions.The volume will be of interest to students and established archaeologists, as well as practitioners from a range of applied disciplines.


Author(s):  
Feng Li ◽  
Gulnigar Ablat ◽  
Siqi Zhou ◽  
Yixin Liu ◽  
Yufeng Bi ◽  
...  

AbstractIn ice and snow weather, the surface texture characteristics of asphalt pavement change, which will significantly affect the skid resistance performance of asphalt pavement. In this study, five asphalt mixture types of AC-5, AC-13, AC-16, SMA-13, SMA-16 were prepared under three conditions of the original state, ice and snow. In this paper, a 2D-wavelet transform approach is proposed to characterize the micro and macro texture of pavement. The Normalized Energy (NE) is proposed to describe the pavement texture quantitatively. Compared with the mean texture depth (MTD), NE has the advantages of full coverage, full automation and wide analytical scale. The results show that snow increases the micro-scale texture because of its fluffiness, while the formation of the ice sheets on the surface reduces the micro-scale texture. The filling effect of snow and ice reduces the macro-scale texture of the pavement surface. In a follow-up study, the 2D-wavelet transform approach can be applied to improve the intelligent driving braking system, which can provide pavement texture information for the safe braking strategy of driverless vehicles.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zijin Gu ◽  
Keith Wakefield Jamison ◽  
Mert Rory Sabuncu ◽  
Amy Kuceyeski

AbstractWhite matter structural connections are likely to support flow of functional activation or functional connectivity. While the relationship between structural and functional connectivity profiles, here called SC-FC coupling, has been studied on a whole-brain, global level, few studies have investigated this relationship at a regional scale. Here we quantify regional SC-FC coupling in healthy young adults using diffusion-weighted MRI and resting-state functional MRI data from the Human Connectome Project and study how SC-FC coupling may be heritable and varies between individuals. We show that regional SC-FC coupling strength varies widely across brain regions, but was strongest in highly structurally connected visual and subcortical areas. We also show interindividual regional differences based on age, sex and composite cognitive scores, and that SC-FC coupling was highly heritable within certain networks. These results suggest regional structure-function coupling is an idiosyncratic feature of brain organisation that may be influenced by genetic factors.


Sign in / Sign up

Export Citation Format

Share Document