scholarly journals Dietary Enteromorpha Polysaccharide Enhances Intestinal Immune Response, Integrity, and Caecal Microbial Activity of Broiler Chickens

2021 ◽  
Vol 8 ◽  
Author(s):  
Teketay Wassie ◽  
Zhuang Lu ◽  
Xinyi Duan ◽  
Chunyan Xie ◽  
Kefyalew Gebeyew ◽  
...  

Marine algae polysaccharides have been shown to regulate various biological activities, such as immune modulation, antioxidant, antidiabetic, and hypolipidemic. However, litter is known about the interaction of these polysaccharides with the gut microbiota. This study aimed to evaluate the effects of marine algae Enteromorpha (Ulva) prolifera polysaccharide (EP) supplementation on growth performance, immune response, and caecal microbiota of broiler chickens. A total of 200 1-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with ten replications of ten chickens in each replication. The dietary treatments consisted of the control group (fed basal diet), and EP group (received diet supplemented with 400 mg EP/kg diet). Results showed that chickens fed EP exhibited significantly higher (P < 0.05) body weight and average daily gain than the chicken-fed basal diet. In addition, significantly longer villus height, shorter crypt depth, and higher villus height to crypt depth ratio were observed in the jejunal and ileal tissues of chickens fed EP. EP supplementation upregulated the mRNA expression of NF-κB, TLR4, MyD88, IL-2, IFN-α, and IL-1β in the ileal and jejunal tissues (P < 0.05). Besides, we observed significantly higher (P < 0.05) short-chain volatile fatty acids (SCFAs) levels in the caecal contents of the EP group than in the control group. Furthermore, 16S-rRNA analysis revealed that EP supplementation altered gut microbiota and caused an abundance shift at the phylum and genus level in broiler chicken. Interestingly, we observed an association between microbiota and SCFAs production. Overall, this study demonstrated that supplementation of diet with EP promotes growth performance, improves intestinal immune response and integrity, and modulates the caecal microbiota of broiler chickens. This study highlighted the application of marine algae polysaccharides as an antibiotic alternative for chickens. Furthermore, it provides insight to develop marine algae polysaccharide-based functional food and therapeutic agent.

2016 ◽  
Vol 59 (2) ◽  
pp. 235-242 ◽  
Author(s):  
Mehdi Salmanzadeh ◽  
Yahya Ebrahimnezhad ◽  
Habib Aghdam Shahryar ◽  
Jamshid Ghiasi Ghaleh-Kandi

Abstract. The aim of the present study was to investigate the effect of in ovo feeding (IOF) of glutamine on hatchability, development of the gastrointestinal tract, growth performance and carcass characteristics of broiler chickens. Fertilized eggs were subjected to injections with glutamine (Gln) (10, 20, 30, 40 or 50 mg dissolved in 0.5 mL of dionized water) on day 7 of incubation. Hatchability, growth performance, carcass characteristics (carcass weight and relative weights of breast, thigh, heart, liver, gizzard, abdominal fat, intestine, pancreas and spleen) and jejunal morphometry (measurement of villus height and width and crypt depth) were determined during the experiment. The weight of newly hatched chickens was significantly greater in groups with Gln injection than in control and sham groups. But IOF caused lower hatchability than in the control group (non-injected eggs) (p < 0.05). Chickens from IOF of Gln showed better weight gain and feed conversion ratio (0–42 days of age), when compared to chickens hatched from control and sham groups. The IOF of Gln significantly increased villus height, villus width and crypt depth at hatch period and villus height at 42 days of age. In addition, carcass weights and relative weights of breast, thigh and gizzard were also markedly increased in chickens treated in ovo with Gln; whereas heart, liver, abdominal fat, intestine, pancreas and spleen were not significantly altered at the end of the experimental period. These data suggest that the IOF of Gln may improve jejunum development, leading to an increased nutrient assimilation and consequently to greater performance in broiler chickens.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuxia Chen ◽  
Yining Xie ◽  
Ruqing Zhong ◽  
Lei Liu ◽  
Changguang Lin ◽  
...  

Xylo-oligosaccharides (XOS) is a well-known kind of oligosaccharide and extensively applied as a prebiotic. The objective of this study was to investigate the effect of XOS supplementation substituting chlortetracycline (CTC) on growth, gut morphology, gut microbiota, and hindgut short chain fatty acid (SCFA) contents of weaning piglets. A total of 180 weaned piglets were randomly allocated to three treatments for 28 days, as follows: control group (basal diet, CON), basal diet with 500 mg/kg (XOS500) XOS, and positive control (basal diet with 100 mg/kg CTC). Compared with the CON group, the piglets in the XOS500 group improved body weight (BW) on days 28, average daily gain (ADG) and reduced feed: gain ratio during days 1–28 (P &lt; 0.05). The XOS500 supplementation increased Villus height and Villus height: Crypt depth ratio in the ileum (P &lt; 0.05). Villus Height: Crypt Depth of the ileum was also increased in the CTC treatment group (P &lt; 0.05). Meanwhile, the XOS500 supplementation increased significantly the numbers of goblet cells in the crypt of the cecum. High-throughput 16S rRNA gene sequencing revealed distinct differences in microbial compositions between the ileum and cecum. XOS500 supplementation significantly increased the bacterial diversity. However, CTC treatment markedly reduced the microbial diversity (P &lt; 0.05). Meanwhile, XOS500 supplementation in the diet significantly increased the abundance of Lactobacillus genus compared to the CON and CTC group in the ileum and cecum (P &lt; 0.01), whereas the level of Clostridium_sensu_stricto_1, Escherichia-Shigella, and Terrisporobacter genus in the XOS500 group were markedly lower than the CON and CTC group (P &lt; 0.05). In addition, dietary supplementation with XOS500 significantly increased the total short-chain fatty acids, propionate and butyrate concentrations and decreased the acetate concentration compared to the CON group in the cecum (P &lt; 0.05). In summary, dietary supplemented with XOS500 could enhance specific beneficial microbiota abundance and decrease harmful microbiota abundance to maintain the structure of the intestinal morphology and improve growth performance of weaned piglets. Thus, XOS may potentially function as an alternative to in-feed antibiotics in weaned piglets in modern husbandry.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 301 ◽  
Author(s):  
Ivana Prakatur ◽  
Maja Miskulin ◽  
Mirela Pavic ◽  
Ksenija Marjanovic ◽  
Valerija Blazicevic ◽  
...  

The aim of this study was to determine the influence of dietary supplementation with propolis and bee pollen on the intestinal morphology and absorptive surface areas of chickens. Two hundred day-old Ross 308 chickens (100 male and 100 female) were equally allocated into five groups. Throughout the whole study, the control group of chickens was fed with a basal diet, while the experimental groups of chickens were fed with the same diet supplemented with propolis and bee pollen: P1 = 0.25 g of propolis/kg + 20 g of bee pollen/kg; P2 = 0.5 g of propolis/kg; P3 = 1.0 g of propolis/kg; P4 = 20 g of bee pollen/kg. The duodenal villi of chickens from all experimental groups were significantly higher and wider (p < 0.001), while their duodenal villi crypts were significantly deeper (p < 0.001) in comparison with these parameters in chickens from the control group. The villus height to crypt depth ratio, as well as the absorptive surface areas of broiler chickens, were significantly increased (p < 0.001) in experimental groups of chickens in comparison with the control group. These findings suggest that dietary supplementation with propolis and bee pollen has a beneficial effect on broilers chickens’ intestinal morphophysiology.


2021 ◽  
Author(s):  
Hong Yongxing ◽  
Zhang Lang ◽  
Tian Kui ◽  
Sun Haodong ◽  
Liu Xingting ◽  
...  

Abstract Background: Lasia spinosa Thw. (LST) has been proven to be nutritious and have growth-promoting, antioxidant functions and so on, but its effect in chicken is still unclear. This study aimed to evaluate the effects of dietary LST powder supplementation on growth performance, blood metabolites, antioxidant status, intestinal morphology and cecal microbiome in Chinese yellow-feathered broilers.Methods: A total of 400 one-day-old yellow-feather broilers were randomly allotted to 4 dietary treatments: LST0 group (a basal diet), LST1 group (a basal diet with 1% LST powder), LST2 group (a basal diet with 2% LST powder), LST4 group (a basal diet with 4% LST powder), ten replicates for each treatment and 10 broilers in each treatment group. Results: Results indicated that the average daily feed intake of broilers during 22-42d and the average daily gain of chickens over all periods were significantly increased by dietary supplementation of LST powder compared to a control group, while the feed conversion ratio during the overall periods was markedly decreased. The levels of SOD, CAT and GSH-Px in serum, liver and breast muscle were also significantly increased in LST supplemented groups, while ROS and MDA in serum, liver and breast muscle were decreased. Furthermore, the levels of TG and LDL-C were significantly decreased by the addition of dietary LST powder, while levels of HDL-C, Ca, Fe, Mg and P were linearly increased. Regarding the gut morphometric, crypt depth was significantly decreased by LST supplementation, while villus height and the ratio of villus height to crypt depth were notably increased. Sequencing of 16S rRNA from the cecal contents of broilers revealed that the composition of the chicken gut microbiota was altered by LST supplementation. Moreover, the diversity of microbiota in broilers was increased in the LST1 groups but was decreased in the LST2 and LST4 groups compared with LST0 groups. The differential genera enriched in LST1 groups, such as Bacillus, Odoribacter, Sutterella, Anaerofilum, Peptococcus, were closely related to the increased growth performance, antioxidant status, intestinal morphology, Ca, Mg and reduced blood lipid in the treated broilers. Conclusions: The supplementation of LST powder to the diets of Chinese yellow-feathered broilers improved growth performance, lipid profile, antioxidant indices, intestinal morphology and gut microbiota balance, with its optimum level in yellow-feathered broilers’ diet being 1%.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zehe Song ◽  
Kaihuan Xie ◽  
Yunlu Zhang ◽  
Qian Xie ◽  
Xi He ◽  
...  

The restriction and banning of antibiotics in farm animal feed has led to a search for promising substitutes for antibiotics to promote growth and maintain health for livestock and poultry. Ginsenoside Rg1, which is one of the most effective bioactive components in ginseng, has been reported to have great potential to improve the anti-inflammatory and anti-oxidative status of animals. In this study, 360 Chinese indigenous broiler chickens with close initial body weight were divided into 5 groups. Each group contained 6 replicates and each replicate had 12 birds. The experimental groups were: the control group, fed with the basal diet; the antibiotic group, fed basal diet + 300 mg/kg 15% chlortetracycline; and three Rg1 supplementation groups, fed with basal diet + 100, 200, and 300 mg/kg ginsenoside Rg1, respectively. The growth performance, immune function, and intestinal health of birds were examined at early (day 1–28) and late (day 29–51) stages. Our results showed that dietary supplementation of 300 mg/kg ginsenoside Rg1 significantly improved the growth performance for broilers, particularly at the late stage, including an increase in final body weight and decrease of feed conversion ratio (P &lt; 0.05). Additionally, the integrity of intestinal morphology (Villus height, Crypt depth, and Villus height/Crypt depth) and tight junction (ZO-1 and Occludin), and the secretion of sIgA in the intestine were enhanced by the supplementation of Rg1 in chicken diet (P &lt; 0.05). The immune organ index showed that the weight of the thymus, spleen, and bursa was significantly increased at the early stage in ginsenoside Rg1 supplementation groups (P &lt; 0.05). Our findings might demonstrate that ginsenoside Rg1 could serve as a promising antibiotic alternative to improve the growth performance and gut health for broiler chickens mainly through its amelioration of inflammatory and oxidative activities.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 905
Author(s):  
Haoran Zhang ◽  
Xiaorong Yu ◽  
Qing Li ◽  
Guangtian Cao ◽  
Jie Feng ◽  
...  

This present study aimed to investigate the effects of rhamnolipids (RLS) on the growth performance, intestinal morphology, immune function, short-chain fatty acid content, and microflora community in broiler chickens challenged with lipopolysaccharides (LPS). A total of 450 broiler chickens were randomly allocated into three groups: basal diet with no supplement (NCO), basal diet with bacitracin (ANT), and basal diet with rhamnolipids (RLS). After 56 d of feeding, 20 healthy broilers were selected from each group, with half being intraperitoneally injected with lipopolysaccharides (LPS) and the other half with normal saline. Treatments with LPS were labelled LPS-NCO, LPS-ANT, and LPS-RLS, whereas treatments with normal saline were labelled NS-NCO, NS-ANT, and NS-RLS. LPS-challenged birds had lower jejunal villus height and higher crypt depth than unchallenged birds. LPS-RLS broilers had increased jejunal villus height and villus height/crypt depth ratio (V/C) but lower crypt depth than LPS-NCO. Dietary supplementation with RLS reduced the LPS-induced immunological stress. Compared with LPS-NCO, birds in LPS-RLS had lower concentrations of IL-1β, IL-6, and TNF-α. In LPS-challenged broilers, RLS and ANT increased the concentrations of IgA, IgM, and IgY compared with LPS-NCO. In LPS treatments, RLS enhanced the contents of acetic acid, butyrate, isobutyric acid, isovalerate, and valerate more than LPS-NCO birds. High-throughput sequencing indicated that RLS supplementation led to changes in the cecal microbial community of broilers. At the species level, Clostridium-sp-Marseille-p3244 and Slakia_eqcsolifaciens were more abundant in NS-RLS than in NS-NCO broilers. In summary, RLS improved the growth performance and relative abundance of cecal microbiota and reduced the LPS-induced immunological stress in broiler chickens.


Animals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 493 ◽  
Author(s):  
Jun Li ◽  
Yefei Cheng ◽  
Yueping Chen ◽  
Hengman Qu ◽  
Yurui Zhao ◽  
...  

This study aimed to investigate the effects of chitooligosaccharide (COS) inclusion as an alternative to antibiotics on growth performance, intestinal morphology, barrier function, antioxidant capacity, and immunity in broilers. In total, 144 one-day-old Arbor Acres broiler chicks were randomly assigned into 3 groups and fed a basal diet free from antibiotics (control group) or the same basal diet further supplemented with either chlortetracycline (antibiotic group) or COS, for 21 days. Compared with the control group, inclusion of COS reduced the feed to gain ratio, the jejunal crypt depth, the plasma diamine oxidase activity, and the endotoxin concentration, as well as jejunal and ileal malondialdehyde contents, whereas increased duodenal villus height, duodenal and jejunal ratio of villus height to crypt depth, intestinal immunoglobulin G, and jejunal immunoglobulin M (IgM) contents were observed, with the values of these parameters being similar or better to that of the antibiotic group. Additionally, supplementation with COS enhanced the superoxide dismutase activity and IgM content of the duodenum and up-regulated the mRNA level of claudin three in the jejunum and ileum, when compared with the control and antibiotic groups. In conclusion, dietary COS inclusion (30 mg/kg), as an alternative to antibiotics, exerts beneficial effects on growth performance, intestinal morphology, barrier function, antioxidant capacity, and immunity in broilers.


2014 ◽  
Vol 3 (1) ◽  
pp. 150-157
Author(s):  
Khalid M. Gaafar

The research was conducted to study the effect of feeding broiler chickens on diets containing isomaltooligosaccharides on the growth performance, carcass traits and immune response. 90-one day old broiler chicks were used according to completely randomized two treatment groups and one control, 30 birds each. Birds fed ad-libitum on basal starter and grower-finisher diets for 35 day. Diets of treatment`s groups contained 0.5 g/Kg and 1 g/Kg of Isomaltooligosaccharides, while the control group fed on the basal diets without Isomaltooligosaccharides supplementation. Dietary supplementation of broiler chickens with Isomaltooligosaccharides improved body weight, feed conversion, carcass traits, two lymphoid organs weight and log antibody titer against avian flu vaccine. Most of the highest values were for birds fed low levels of Isomaltooligosaccharides. Feed intake decreases as Isomaltooligosaccharides level increases. Dietary supplementation with Isomaltooligosaccharides did not affect the lipids profile (triglycerides, total cholesterol, LDL and HDL), however the blood VLDL levels decreased with increased levels of Malondialdehyde and Glutathione reductase. Collectively, Dietary supplementation of broiler chickens with 0.5 g/Kg diet of Isomaltooligosaccharides improved growth performance, carcass traits and immune status.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 703
Author(s):  
Jae-Cheol Jang ◽  
Kwang Kim ◽  
Young Jang ◽  
Yoo Kim

The experiment aimed to investigate the effects of dietary β-mannanase supplementation on growth performance, apparent total tract digestibility (ATTD) of nutrients, intestinal integrity, and the immunological and oxidative stress parameters in weaning pigs. A total of 64 newly weaning pigs (initial body weight: 6.96 ± 0.70 kg) were allotted to two dietary treatments in eight replicates per treatment with four pigs per pen based on body weight and sex. Dietary treatments were 1.) CON (control: corn-soybean meal based basal diet) and 2.) β-mannanase (basal diet +0.06% β-mannanase). The β-mannanase supplementation did not affect growth performance, concentrations of acute phase protein, superoxide dismutase and glutathione peroxidase. However, the pigs fed the β-mannanase-supplemented diet had greater ATTD of ether extract, jejunum villus height, and villus height-to-crypt depth ratio, and lower crypt depth compared with those fed the CON diet (p < 0.05). The pigs fed the β-mannanase-supplemented diet tended to have the lower count of E. coli in cecum than those fed the CON diet (p = 0.08). In conclusion, dietary β-mannanase supplementation did not affect growth performance, immune response and oxidative stress of weaning pigs, whereas it increased fat digestibility and had positive effects on intestinal integrity and cecum microflora by reducing the count of E.coli.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cong Wang ◽  
Qing Liu ◽  
Fengchun Ye ◽  
Hongbo Tang ◽  
Yanpeng Xiong ◽  
...  

AbstractPurslane is a widespread wild vegetable with both medicinal and edible properties. It is highly appreciated for its high nutritional value and is also considered as a high-quality feed resource for livestock and poultry. In this study, Sanhuang broilers were used to investigate the effect of feeding purslane diets on the growth performance in broilers and their gut microbiota. A total of 48 birds with good growth and uniform weight were selected and randomly allocated to four treatment groups A (control), B, C and D. Dietary treatments were fed with basal diet without purslane and diets containing 1%, 2% and 3% purslane. The 16S rDNA was amplified by PCR and sequenced using the Illumina HiSeq platform to analyze the composition and diversity of gut microbiota in the four sets of samples. The results showed that dietary inclusion of 2% and 3% purslane could significantly improve the growth performance and reduce the feed conversion ratio. Microbial diversity analysis indicated that the composition of gut microbiota of Sanhuang broilers mainly included Gallibacterium, Bacteroides and Escherichia-Shigella, etc. As the content of purslane was increased, the abundance of Lactobacillus increased significantly, and Escherichia-Shigella decreased. LEfSe analysis revealed that Bacteroides_caecigallinarum, Lachnospiraceae, Lactobacillales and Firmicutes had significant differences compared with the control group. PICRUSt analysis revealed bacteria mainly enriched in carbohydrate metabolism pathway due to the additon of purslane in the diet. These results suggest that the addition of purslane to feed could increase the abundance of Lactobacillus in intestine, modulate the environment of gut microbiota and promote the metabolism of carbohydrates to improve its growth performance. This study indicates that the effect of purslane on the growth-promoting performance of broilers might depend on its modulation on gut microbiota, so as to provide a certain scientific basis for the application of purslane in the feed industry.


Sign in / Sign up

Export Citation Format

Share Document