scholarly journals Toward Therapeutic Targeting of Bone Marrow Leukemic Niche Protective Signals in B-Cell Acute Lymphoblastic Leukemia

2021 ◽  
Vol 10 ◽  
Author(s):  
Marjorie C. Delahaye ◽  
Kaoutar-Insaf Salem ◽  
Jeoffrey Pelletier ◽  
Michel Aurrand-Lions ◽  
Stéphane J. C. Mancini

B-cell acute lymphoblastic leukemia (B-ALL) represents the malignant counterpart of bone marrow (BM) differentiating B cells and occurs most frequently in children. While new combinations of chemotherapeutic agents have dramatically improved the prognosis for young patients, disease outcome remains poor after relapse or in adult patients. This is likely due to heterogeneity of B-ALL response to treatment which relies not only on intrinsic properties of leukemic cells, but also on extrinsic protective cues transmitted by the tumor cell microenvironment. Alternatively, leukemic cells have the capacity to shape their microenvironment towards their needs. Most knowledge on the role of protective niches has emerged from the identification of mesenchymal and endothelial cells controlling hematopoietic stem cell self-renewal or B cell differentiation. In this review, we discuss the current knowledge about B-ALL protective niches and the development of therapies targeting the crosstalk between leukemic cells and their microenvironment.

2021 ◽  
Vol 22 (15) ◽  
pp. 8166
Author(s):  
Natalia-Del Pilar Vanegas ◽  
Paola Fernanda Ruiz-Aparicio ◽  
Gloria Inés Uribe ◽  
Adriana Linares-Ballesteros ◽  
Jean-Paul Vernot

Leukemic cell growth in the bone marrow (BM) induces a very stressful condition. Mesenchymal stem cells (MSC), a key component of this BM niche, are affected in several ways with unfavorable consequences on hematopoietic stem cells favoring leukemic cells. These alterations in MSC during B-cell acute lymphoblastic leukemia (B-ALL) have not been fully studied. In this work, we have compared the modifications that occur in an in vitro leukemic niche (LN) with those observed in MSC isolated from B-ALL patients. MSC in this LN niche showed features of a senescence process, i.e., altered morphology, increased senescence-associated β-Galactosidase (SA-βGAL) activity, and upregulation of p53 and p21 (without p16 expression), cell-cycle arrest, reduced clonogenicity, and some moderated changes in stemness properties. Importantly, almost all of these features were found in MSC isolated from B-ALL patients. These alterations rendered B-ALL cells susceptible to the chemotherapeutic agent dexamethasone. The senescent process seems to be transient since when leukemic cells are removed, normal MSC morphology is re-established, SA-βGAL expression is diminished, and MSC are capable of re-entering cell cycle. In addition, few cells showed low γH2AX phosphorylation that was reduced to basal levels upon cultivation. The reversibility of the senescent process in MSC must impinge important biological and clinical significance depending on cell interactions in the bone marrow at different stages of disease progression in B-ALL.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2643-2643 ◽  
Author(s):  
Lieke C.J. van den Berk ◽  
Arian van der Veer ◽  
Marieke E. Willemse ◽  
Myrte J.G.A. Theeuwes ◽  
Mirjam W. Luijendijk ◽  
...  

Abstract Malignant cells that infiltrate the bone marrow (BM) interfere with the normal cellular behavior of supporting cells, thereby creating an alternative malignant niche. This intercellular communication is mostly mediated by cytokines and their receptors. In this study, we find that expression of the CXCR4 receptor is significantly increased in pediatric precursor B-cell acute lymphoblastic leukemia (BCP-ALL) cells compared with normal mononuclear hematopoietic cells derived of the bone marrow (p=0.016). Furthermore, we show that high CXCR4 expression is correlated with an unfavorable clinical outcome in BCP-ALL (5-yr CIR ±SE: 38.4% ±6.9% in CXCR4-high versus 12.0% ±4.6% in CXCR4-low expressing patients, p<0.001). Interestingly, BM serum levels of the CXCR4 ligand (CXCL12) are 2.7-fold lower (p=0.005) in samples taken at initial diagnosis of BCP-ALL compared with the levels in samples taken of non-leukemic controls. We show that induction chemotherapy restores CXCL12 levels in the BM to normal levels. Blocking the CXCR4 receptor with Plerixafor (FDA-approved drug) showed that the lower CXCL12 serum levels at initial diagnosis could not be explained by consumption by the leukemic cells, nor did we observe an altered CXCL12-production capacity of BM-MSC at this time-point. We rather observed that a very high density of leukemic cells negatively affected CXCL12 production by the BM-MSC while stimulating the secretion levels of G-CSF. These results suggest that highly proliferative leukemic cells are able to down-regulate the production of cytokines involved in homing (CXCL12), while simultaneously up-regulating the production of cytokines involved in hematopoietic mobilization (G-CSF). This disbalance may stimulate the spreading of BCP-ALL outside the BM. The data presented here suggest that interference with the CXCR4/CXCL12 axis (for instance by using Plerixafor) may be an effective way to mobilize BCP-ALL cells; the more ALL cells become mobilized, the less ALL cells may escape from combination chemotherapy. In proof-of concept studies, this hypothesis needs to be validated to pave the way for implementation in future treatment protocols for children with ALL. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 37 (36) ◽  
pp. 3493-3506 ◽  
Author(s):  
Cornelia Eckert ◽  
Stefanie Groeneveld-Krentz ◽  
Renate Kirschner-Schwabe ◽  
Nikola Hagedorn ◽  
Christiane Chen-Santel ◽  
...  

PURPOSE Minimal residual disease (MRD) helps to accurately assess when children with late bone marrow relapses of B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) will benefit from allogeneic hematopoietic stem-cell transplantation (allo-HSCT). More detailed dissection of MRD response heterogeneity and the specific genetic aberrations could improve current practice. PATIENTS AND METHODS MRD was assessed after induction treatment and at different times during relapse treatment until allo-HSCT (indicated in poor responders to induction; MRD ≥ 10−3) for patients being treated for late BCP-ALL bone marrow relapses (n = 413; median follow-up, 9.4 years) in the ALL-REZ BFM 2002 trial/registry (ClinicalTrials.gov identifier: NCT00114348 ). RESULTS Patients with both good (MRD < 10−3) and poor responses to induction treatment reached excellent event-free survival (EFS; 72% v 65%) and overall survival (OS; 82% v 74%). Patients with MRD of 10−2 or greater after induction had reduced EFS (56%), and their MRD persisted until allo-HSCT more frequently than it did in patients with MRD of 10−3 or greater to less than 10−2 ( P = .037). Patients with 25% or more leukemic blasts after induction (early nonresponders) had the poorest prognosis (EFS, 22%). Interestingly, patients with MRD of 10−3 or greater before allo-HSCT (late nonresponders) still had an EFS of 50% and OS of 63%, which in principle justifies allo-HSCT in these patients. From a panel of selected candidate genes, TP53 alterations (frequency, 8%) were the only genetic alteration with independent prognostic value in any MRD-based response subgroup. CONCLUSION After induction treatment, MRD-based treatment stratification resulted in excellent survival in patients with late relapsed BCP-ALL. Prognosis could be further improved in very poor responders by intensifying treatment directly after induction. TP53 alterations can be defined as a novel genetic high-risk marker in all MRD response groups in late relapsed BCP-ALL. Here we identified early and late nonresponders to be considered as events in future trials.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fábio Magalhães-Gama ◽  
Marlon Wendell Athaydes Kerr ◽  
Nilberto Dias de Araújo ◽  
Hiochelson Najibe Santos Ibiapina ◽  
Juliana Costa Ferreira Neves ◽  
...  

In the hematopoietic microenvironment, leukemic cells secrete factors that imbalanced chemokine and cytokine production. However, the network of soluble immunological molecules in the bone marrow microenvironment of acute lymphoblastic leukemia (ALL) remains underexplored. Herein, we evaluated the levels of the immunological molecules (CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-6, TNF, IFN-γ, IL-17A, IL-4, IL-10, and IL-2) in the bone marrow plasma of 47 recently diagnosed B-cell acute lymphoblastic leukemia (B-ALL) patients during induction therapy using cytometric beads arrays. The results demonstrated that B-ALL patients showed high levels of CXCL9, CXCL10, IL-6, and IL-10 at the time of diagnosis, while at the end of induction therapy, a decrease in the levels of these immunological molecules and an increase in CCL5, IFN-γ, and IL-17A levels were observed. These findings indicate that B-ALL patients have an imbalance in chemokines and cytokines in the bone marrow microenvironment that contributes to suppressing the immune response. This immune imbalance may be associated with the presence of leukemic cells since, at the end of the induction therapy, with the elimination and reduction to residual cells, the proinflammatory profile is reestablished, characterized by an increase in the cytokines of the Th1 and Th17 profiles.


2021 ◽  
Vol 22 (9) ◽  
pp. 4426
Author(s):  
Erica Dander ◽  
Chiara Palmi ◽  
Giovanna D’Amico ◽  
Giovanni Cazzaniga

Genetic lesions predisposing to pediatric B-cell acute lymphoblastic leukemia (B-ALL) arise in utero, generating a clinically silent pre-leukemic phase. We here reviewed the role of the surrounding bone marrow (BM) microenvironment in the persistence and transformation of pre-leukemic clones into fully leukemic cells. In this context, inflammation has been highlighted as a crucial microenvironmental stimulus able to promote genetic instability, leading to the disease manifestation. Moreover, we focused on the cross-talk between the bulk of leukemic cells with the surrounding microenvironment, which creates a “corrupted” BM malignant niche, unfavorable for healthy hematopoietic precursors. In detail, several cell subsets, including stromal, endothelial cells, osteoblasts and immune cells, composing the peculiar leukemic niche, can actively interact with B-ALL blasts. Through deregulated molecular pathways they are able to influence leukemia development, survival, chemoresistance, migratory and invasive properties. The concept that the pre-leukemic and leukemic cell survival and evolution are strictly dependent both on genetic lesions and on the external signals coming from the microenvironment paves the way to a new idea of dual targeting therapeutic strategy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephanie L. Rellick ◽  
Gangqing Hu ◽  
Debra Piktel ◽  
Karen H. Martin ◽  
Werner J. Geldenhuys ◽  
...  

AbstractB-cell acute lymphoblastic leukemia (ALL) is characterized by accumulation of immature hematopoietic cells in the bone marrow, a well-established sanctuary site for leukemic cell survival during treatment. While standard of care treatment results in remission in most patients, a small population of patients will relapse, due to the presence of minimal residual disease (MRD) consisting of dormant, chemotherapy-resistant tumor cells. To interrogate this clinically relevant population of treatment refractory cells, we developed an in vitro cell model in which human ALL cells are grown in co-culture with human derived bone marrow stromal cells or osteoblasts. Within this co-culture, tumor cells are found in suspension, lightly attached to the top of the adherent cells, or buried under the adherent cells in a population that is phase dim (PD) by light microscopy. PD cells are dormant and chemotherapy-resistant, consistent with the population of cells that underlies MRD. In the current study, we characterized the transcriptional signature of PD cells by RNA-Seq, and these data were compared to a published expression data set derived from human MRD B-cell ALL patients. Our comparative analyses revealed that the PD cell population is markedly similar to the MRD expression patterns from the primary cells isolated from patients. We further identified genes and key signaling pathways that are common between the PD tumor cells from co-culture and patient derived MRD cells as potential therapeutic targets for future studies.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3417-3423 ◽  
Author(s):  
Marina Bousquet ◽  
Cyril Broccardo ◽  
Cathy Quelen ◽  
Fabienne Meggetto ◽  
Emilienne Kuhlein ◽  
...  

Abstract We report a novel t(7;9)(q11;p13) translocation in 2 patients with B-cell acute lymphoblastic leukemia (B-ALL). By fluorescent in situ hybridization and 3′ rapid amplification of cDNA ends, we showed that the paired box domain of PAX5 was fused with the elastin (ELN) gene. After cloning the full-length cDNA of the chimeric gene, confocal microscopy of transfected NIH3T3 cells and Burkitt lymphoma cells (DG75) demonstrated that PAX5-ELN was localized in the nucleus. Chromatin immunoprecipitation clearly indicated that PAX5-ELN retained the capability to bind CD19 and BLK promoter sequences. To analyze the functions of the chimeric protein, HeLa cells were cotransfected with a luc-CD19 construct, pcDNA3-PAX5, and with increasing amounts of pcDNA3-PAX5-ELN. Thus, in vitro, PAX5-ELN was able to block CD19 transcription. Furthermore, real-time quantitative polymerase chain reaction (RQ-PCR) experiments showed that PAX5-ELN was able to affect the transcription of endogenous PAX5 target genes. Since PAX5 is essential for B-cell differentiation, this translocation may account for the blockage of leukemic cells at the pre–B-cell stage. The mechanism involved in this process appears to be, at least in part, through a dominant-negative effect of PAX5-ELN on the wild-type PAX5 in a setting ofPAX5 haploinsufficiency.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-20
Author(s):  
Monique Chavez ◽  
Erica Barnell ◽  
Malachi Griffith ◽  
Zachary Skidmore ◽  
Obi Griffith ◽  
...  

Multiple Myeloma (MM) is a malignancy of plasma cells that affects over 30,000 Americans every year. Despite advances in the treatment of the disease, approximately 12,000 American patients will still die of MM in 2019. One of the mainstays of treatment for MM is the immunomodulatory and antiangiogenic drug lenalidomide; which is used in induction therapy, maintenance therapy and treatment of relapsed disease. Although not fully elucidated, lenalidomide's mechanism of action in MM involves the drug binding to Cerebelon (CBN) and leads to the subsequent degradation of the Ikaros (IKZF1) and Aiolos (IKZF3) transcription factors (TF). These TFs play important regulatory roles in lymphocyte development. Despite lenalidomide's importance in MM treatment, several groups have reported that MM patients treated with lenalidomide rarely go on to develop B-cell acute lymphoblastic leukemia (B-ALL). The genetics and clonal relationship between the MM and subsequent B-ALL have not been previously defined. Importantly, it is not clear if the MM and B-ALL arise from the same founding clone that has been under selective pressure during lenalidomide treatment. As deletions in IKZF1 are common in B-ALL, one could hypothesize that lenalidomide's mechanism of action mimics this alteration and contributes to leukemogenesis. We sequenced the tumors from a cohort of seven patients with MM treated with lenalidomide who later developed B-ALL. These data did not show any mutational overlap between the MM and ALL samples-the tumors arose from different founding clones in each case. However, several genes were recurrently mutated in the B-ALL samples across the seven patients. These genes included TP53, ZFP36L2, KIR3DL2, RNASE-L, and TERT. Strikingly, five of the seven patients had a TP53 mutations in the B-ALL sample that was not present in the matched MM sample. The frequency of TP53 mutations in our cohort was much higher than that reported in adult de novo B-ALL patients which can range between 4.1-6.4% (Hernández-Rivas et al. 2017 and Foa et al. 2013). Utilizing CRISPR-Cas9 gene editing, we disrupted the Zfp36l2 or Actb in murine hematopoietic stem cells (HSCs) of mice with or without loss of Trp53. We performed our first transplantation experiment in which the cohorts of mice have loss of Trp53 alone, loss of Zfp36l2 alone, loss of both Trp53 and Zfp36l2, or a control knockout (KO) of Actb. To characterize the disruption of Zfp36l2 alone and in combination with Trp53 we analyzed the hematopoietic stem and progenitor cell compartments in the bone marrow of the above transplanted mice. In mice with a loss of Zfp36l2 there is a decrease in Lin- Sca-1+ c-Kit+ (LSK), short term-HSC (ST-HSC), and multipotent progenitors (MPP). This decrease was not observed in the mice with a loss of both Trp53 and Zfp36l2, where instead we noted an increase in monocyte progenitors (MP), granulocytes-macrophage progenitors (GMP), and common myeloid progenitors (CMP) cells. In this Trp53 Zfp36l2 double loss model we also noted a decrease in B220+ B-cells that was not seen in the Zfp36l2 alone. In this cohort of Trp53 Zfp36l2 loss, we characterized B-cell development through hardy fraction flow cytometry, and identified a decrease in fractions A and B/C (pre-pro and pro-B-cells, respectively) as compared to Zfp36l2 or Actb alone. As lenalidomide does not bind to Cbn in mice, we used the human B-ALL NALM6 cell line to test if treatment with lenalidomide will lead to a selective growth advantage of cells with the same genes knocked out versus wild-type control cells grown in the same culture. We hypothesize that lenalidomide treatment selectively enriched for pre-existing mutated cell clones that evolved into the B-ALL. Preliminary data in NALM6 cells with a loss of TP53 demonstrate a slight increase in cell number at day 7 compared to a RELA control. These experiments will be repeated with concurrent ZFP36L2 and TP53 mutations as well as ZFP36L2 alone. Treatment-related disease is a key consideration when deciding between different treatment options, and this project aims to understand the relationship between MM treatment and B-ALL occurrence. It may be possible to identify MM patients who are at-risk for B-ALL. For example, MM patients who harbor low-level TP53 mutations prior to lenalidomide treatment could be offered alternative treatment options. Disclosures Barnell: Geneoscopy Inc: Current Employment, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees. Wartman:Novartis: Consultancy; Incyte: Consultancy.


Leukemia ◽  
2018 ◽  
Vol 33 (6) ◽  
pp. 1337-1348 ◽  
Author(s):  
Martha Velázquez-Avila ◽  
Juan Carlos Balandrán ◽  
Dalia Ramírez-Ramírez ◽  
Mirella Velázquez-Avila ◽  
Antonio Sandoval ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
Han Wang ◽  
Bowen Cui ◽  
Huiying Sun ◽  
Fang Zhang ◽  
Jianan Rao ◽  
...  

GATA2 is a transcription factor that is critical for the generation and survival of hematopoietic stem cells (HSCs). It also plays an important role in the regulation of myeloid differentiation. Accordingly, GATA2 expression is restricted to HSCs and hematopoietic progenitors as well as early erythroid cells and megakaryocytic cells. Here we identified aberrant GATA2 expression in B-cell acute lymphoblastic leukemia (B-ALL) by analyzing transcriptome sequencing data obtained from St. Jude Cloud. Differentially expressed genes upon GATA2 activation showed significantly myeloid-like transcription signature. Further analysis identified several tumor-associated genes as targets of GATA2 activation including BAG3 and EPOR. In addition, the correlation between KMT2A-USP2 fusion and GATA2 activation not only indicates a potential trans-activating mechanism of GATA2 but also suggests that GATA2 is a target of KMT2A-USP2. Furthermore, by integrating whole-genome and transcriptome sequencing data, we showed that GATA2 is also cis activated. A somatic focal deletion located in the GATA2 neighborhood that disrupts the boundaries of topologically associating domains was identified in one B-ALL patient with GATA2 activation. These evidences support the hypothesis that GATA2 could be involved in leukemogenesis of B-ALL and can be transcriptionally activated through multiple mechanisms. The findings of aberrant activation of GATA2 and its molecular function extend our understanding of transcriptional factor dysregulation in B-ALL.


Sign in / Sign up

Export Citation Format

Share Document