scholarly journals Comprehensive Molecular Analyses of a Six-Gene Signature for Predicting Late Recurrence of Hepatocellular Carcinoma

2021 ◽  
Vol 11 ◽  
Author(s):  
Yuyuan Zhang ◽  
Zaoqu Liu ◽  
Xin Li ◽  
Long Liu ◽  
Libo Wang ◽  
...  

A larger number of patients with stages I–III hepatocellular carcinoma (HCC) experience late recurrence (LR) after surgery. We sought to develop a novel tool to stratify patients with different LR risk for tailoring decision-making for postoperative recurrence surveillance and therapy modalities. We retrospectively enrolled two independent public cohorts and 103 HCC tissues. Using LASSO logical analysis, a six-gene model was developed in the The Cancer Genome Atlas liver hepatocellular carcinoma (TCGA-LIHC) and independently validated in GSE76427. Further experimental validation using qRT-PCR assays was performed to ensure the robustness and clinical feasible of this signature. We developed a novel LR-related signature consisting of six genes. This signature was validated to be significantly associated with dismal recurrence-free survival in three cohorts TCGA-LIHC, GSE76427, and qPCR assays [HR: 2.007 (1.200–3.357), p = 0.008; HR: 2.171 (1.068, 4.412), p-value = 0.032; HR: 3.383 (2.100, 5.450), p-value <0.001]. More importantly, this signature displayed robust discrimination in predicting the LR risk, with AUCs being 0.73 (TCGA-LIHC), 0.93 (GSE76427), and 0.85 (in-house cohort). Furthermore, we deciphered the specific landscape of molecular alterations among patients in nonrecurrence (NR) and LR group to analyze the mechanism contributing to LR. For high-risk group, we also identified several potential drugs with specific sensitivity to high- and low-risk groups, which is vital to improve prognosis of LR-HCC after surgery. We discovered and experimentally validated a novel gene signature with powerful performance for identifying patients at high LR risk in stages I–III HCC.

Mutagenesis ◽  
2021 ◽  
Vol 36 (5) ◽  
pp. 369-379
Author(s):  
Min Deng ◽  
Lin Fang ◽  
Shao-Hua Li ◽  
Rong-Ce Zhao ◽  
Jie Mei ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is still one of the most common malignancies worldwide. The accuracy of biomarkers for predicting the prognosis of HCC and the therapeutic effect is not satisfactory. N6-methyladenosine (m6A) methylation regulators play a crucial role in various tumours. Our research aims further to determine the predictive value of m6A methylation regulators and establish a prognostic model for HCC. In this study, the data of HCC from The Cancer Genome Atlas (TCGA) database was obtained, and the expression level of 15 genes and survival was examined. Then we identified two clusters of HCC with different clinical factors, constructed prognostic markers and analysed gene set enrichment, proteins’ interaction and gene co-expression. Three subgroups by consensus clustering according to the expression of the 13 genes were identified. The risk score generated by five genes divided HCC patients into high-risk and low-risk groups. In addition, we developed a prognostic marker that can identify high-risk HCC. Finally, a novel prognostic nomogram was developed to accurately predict HCC patients’ prognosis. The expression levels of 13 m6A RNA methylation regulators were significantly upregulated in HCC samples. The prognosis of cluster 1 and cluster 3 was worse. Patients in the high-risk group show a poor prognosis. Moreover, the risk score was an independent prognostic factor for HCC patients. In conclusion, we reveal the critical role of m6A RNA methylation modification in HCC and develop a predictive model based on the m6A RNA methylation regulators, which can accurately predict HCC patients’ prognosis and provide meaningful guidance for clinical treatment.


2021 ◽  
Author(s):  
Yuanbin Zhong

Abstract Background Hepatocellular carcinoma (HCC) is a cancer with a poor prognosis. Many recent studies have suggested that pyroptosis is important in tumour progression. However, the role of pyroptosis-related genes (PRGs) in HCC remains unclear. Materials and methods We identified differentially expressed PRGs in tumours versus normal tissues. Through univariate, LASSO, and multivariate Cox regression analyses, a prognostic PRG signature was established. The signature effectiveness was evaluated by time-dependent receiver operating characteristic (ROC) curve and Kaplan–Meier (KM) survival analysis. The signature was validated in the ICGC (LIRI-JP) cohort. In addition, single-sample gene enrichment analysis (ssGSEA) showed the infiltration of major immune cell types and the activity of common immune pathways in different subgroups. Results Twenty-nine pyroptosis-related DEGs from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset were detected, and four genes (CTSV, CXCL8, MKI67 and PRF1) among them were selected to construct a prognostic signature. Then, the patients were divided into high- and low-risk groups. The pyroptosis-related signature was significantly associated with overall survival (OS). In addition, the patients in the high-risk group had lower levels of immune infiltration. Conclusion The prognostic signature for HCC based on 4 pyroptosis-related genes has reliable prognostic and predictive value for HCC patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiang Zhang ◽  
Wenhao Liu ◽  
Shun-Bin Luo ◽  
Fu-Chen Xie ◽  
Xiao-Jun Liu ◽  
...  

Background: Diffuse lower-grade gliomas (LGGs) are infiltrative and heterogeneous neoplasms. Gene signature including multiple protein-coding genes (PCGs) is widely used as a tumor marker. This study aimed to construct a multi-PCG signature to predict survival for LGG patients.Methods: LGG data including PCG expression profiles and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). Survival analysis, receiver operating characteristic (ROC) analysis, and random survival forest algorithm (RSFVH) were used to identify the prognostic PCG signature.Results: From the training (n = 524) and test (n = 431) datasets, a five-PCG signature which can classify LGG patients into low- or high-risk group with a significantly different overall survival (log rank P < 0.001) was screened out and validated. In terms of prognosis predictive performance, the five-PCG signature is stronger than other clinical variables and IDH mutation status. Moreover, the five-PCG signature could further divide radiotherapy patients into two different risk groups. GO and KEGG analysis found that PCGs in the prognostic five-PCG signature were mainly enriched in cell cycle, apoptosis, DNA replication pathways.Conclusions: The new five-PCG signature is a reliable prognostic marker for LGG patients and has a good prospect in clinical application.


2021 ◽  
Author(s):  
Yiping Zou ◽  
Zhihong Chen ◽  
Hongwei Han ◽  
Qi Lou ◽  
Yuanpeng Zhang ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is one of the main causes of cancer-related deaths worldwide. N6-methyladenosine (m6A) and long noncoding RNA (lncRNA) are two common modifications that affect tumor development and play vital roles in the prognosis of HCC. Therefore, we comprehensively analyzed transcriptome data from the Cancer Genome Atlas (TCGA) and identified lncRNAs related to m6A regulators. Univariate, LASSO, and multivariate Cox regression analyses were used to build a prognostic model. Patients were then divided into low- and high-risk groups according to the optimal cut-off point. The prognosis value of the novel model was evaluated using Kaplan-Meier analysis and the receiver operating characteristic curve. Besides, mutation and immune profiles together with immune checkpoint expressions were further explored to identify the difference in somatic alteration and tumor immune landscape between the two groups. Additionally, a better response to conventional chemotherapy and immunotherapy was found in patients with the high-risk group, but they were more resistant to sorafenib. The m6A-related lncRNAs model might be used to predict the prognosis and drug responses in patients with HCC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dongdong Zhou ◽  
Xiaoli Liu ◽  
Xinhui Wang ◽  
Fengna Yan ◽  
Peng Wang ◽  
...  

Abstract Background Alpha-fetoprotein-negative hepatocellular carcinoma (AFP-NHCC) (< 8.78 ng/mL) have special clinicopathologic characteristics and prognosis. The aim of this study was to apply a new method to establish and validate a new model for predicting the prognosis of patients with AFP-NHCC. Methods A total of 410 AFP-negative patients with clinical diagnosed with HCC following non-surgical therapy as a primary cohort; 148 patients with AFP-NHCC following non-surgical therapy as an independent validation cohort. In primary cohort, independent factors for overall survival (OS) by LASSO Cox regression were all contained into the nomogram1; by Forward Stepwise Cox regression were all contained into the nomogram2. Nomograms performance and discriminative power were assessed with concordance index (C-index) values, area under curve (AUC), Calibration curve and decision curve analyses (DCA). The results were validated in the validation cohort. Results The C-index of nomogram1was 0.708 (95%CI: 0.673–0.743), which was superior to nomogram2 (0.706) and traditional modes (0.606–0.629). The AUC of nomogram1 was 0.736 (95%CI: 0.690–0.778). In the validation cohort, the nomogram1 still gave good discrimination (C-index: 0.752, 95%CI: 0.691–0.813; AUC: 0.784, 95%CI: 0.709–0.847). The calibration curve for probability of OS showed good homogeneity between prediction by nomogram1 and actual observation. DCA demonstrated that nomogram1 was clinically useful. Moreover, patients were divided into three distinct risk groups for OS by the nomogram1: low-risk group, middle-risk group and high-risk group, respectively. Conclusions Novel nomogram based on LASSO Cox regression presents more accurate and useful prognostic prediction for patients with AFP-NHCC following non-surgical therapy. This model could help patients with AFP-NHCC following non-surgical therapy facilitate a personalized prognostic evaluation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ji Li ◽  
Chen Zhu ◽  
Peipei Yue ◽  
Tianyu Zheng ◽  
Yan Li ◽  
...  

Abstract Background Abnormal energy metabolism is one of the characteristics of tumor cells, and it is also a research hotspot in recent years. Due to the complexity of digestive system structure, the frequency of tumor is relatively high. We aim to clarify the prognostic significance of energy metabolism in digestive system tumors and the underlying mechanisms. Methods Gene set variance analysis (GSVA) R package was used to establish the metabolic score, and the score was used to represent the metabolic level. The relationship between the metabolism and prognosis of digestive system tumors was explored using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Volcano plots and gene ontology (GO) analyze were used to show different genes and different functions enriched between different glycolysis levels, and GSEA was used to analyze the pathway enrichment. Nomogram was constructed by R package based on gene characteristics and clinical parameters. qPCR and Western Blot were applied to analyze gene expression. All statistical analyses were conducted using SPSS, GraphPad Prism 7, and R software. All validated experiments were performed three times independently. Results High glycolysis metabolism score was significantly associated with poor prognosis in pancreatic adenocarcinoma (PAAD) and liver hepatocellular carcinoma (LIHC). The STAT3 (signal transducer and activator of transcription 3) and YAP1 (Yes1-associated transcriptional regulator) pathways were the most critical signaling pathways in glycolysis modulation in PAAD and LIHC, respectively. Interestingly, elevated glycolysis levels could also enhance STAT3 and YAP1 activity in PAAD and LIHC cells, respectively, forming a positive feedback loop. Conclusions Our results may provide new insights into the indispensable role of glycolysis metabolism in digestive system tumors and guide the direction of future metabolism–signaling target combined therapy.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liang Hong ◽  
Yu Zhou ◽  
Xiangbang Xie ◽  
Wanrui Wu ◽  
Changsheng Shi ◽  
...  

Abstract Background Cumulative evidences have been implicated cancer stem cells in the tumor environment of hepatocellular carcinoma (HCC) cells, whereas the biological functions and prognostic significance of stemness related genes (SRGs) in HCC is still unclear. Methods Molecular subtypes were identified by cumulative distribution function (CDF) clustering on 207 prognostic SRGs. The overall survival (OS) predictive gene signature was developed, internally and externally validated based on HCC datasets including The Cancer Genome Atlas (TCGA), GEO and ICGC datasets. Hub genes were identified in molecular subtypes by protein-protein interaction (PPI) network analysis, and then enrolled for determination of prognostic genes. Univariate, LASSO and multivariate Cox regression analyses were performed to assess prognostic genes and construct the prognostic gene signature. Time-dependent receiver operating characteristic (ROC) curve, Kaplan-Meier curve and nomogram were used to assess the performance of the gene signature. Results We identified four molecular subtypes, among which the C2 subtype showed the highest SRGs expression levels and proportions of immune cells, whereas the worst OS; the C1 subtype showed the lowest SRGs expression levels and was associated with most favorable OS. Next, we identified 11 prognostic genes (CDX2, PON1, ADH4, RBP2, LCAT, GAL, LPA, CYP19A1, GAST, SST and UGT1A8) and then constructed a prognostic 11-gene module and validated its robustness in all three datasets. Moreover, by univariate and multivariate Cox regression, we confirmed the independent prognostic ability of the 11-gene module for patients with HCC. In addition, calibration analysis plots indicated the excellent predictive performance of the prognostic nomogram constructed based on the 11-gene signature. Conclusions Findings in the present study shed new light on the role of stemness related genes within HCC, and the established 11-SRG signature can be utilized as a novel prognostic marker for survival prognostication in patients with HCC.


2021 ◽  
Author(s):  
Pingfan Wu ◽  
Xiaowen Zhao ◽  
Ling Xue ◽  
Xiaojing Yang ◽  
Yuxiang Shi ◽  
...  

Abstract Considerable evidence suggests that N6-methyladenosine (m6A) is involved in the regulation of long non-coding RNA (lncRNA), whichparticipates in the occurrence, development and prognosis of tumorscancerBut the relationship between m6A regulators-related lncRNA (mRlncRNA) and lung adenocarcinoma (LUAD) remains unclear. This study aims to determine a feature based on mRlncRNA for prognostic evaluation of LUAD patients. By integrating the gene expression data of LUAD and normal samples from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, the m6A gene and mRlncRNA with imbalanced expression were screened out. Then we used the least absolute shrinkage and selection operator (LASSO) to obtain the 13-lncRNA prognostic signature in the TCGA training cohort. Patients were divided into two risk groups based on the risk score of lncRNAs characteristics, and their overall survival (OS) was significantly different. The predictive power of this signature was verified in TCGA testing cohort and entire TCGA cohort. These landmark lncRNAs were involved in several biologiocal processes and pathways related to cell cycle, DNA replication, P53 signaling pathway and mismatch repair. Besides, the high-risk group was low-response to cisplatin, while high-response to mitomycin, docetaxel and immunotherapy. In conclusion, we identified a 13-mRlncRNA model associated with prognosis and treatment sensitivity in LUAD, which may provide clues about the influence of m6A on lncRNA in LUAD and promote the further improvement of LUAD individualized treatment strategies.


2021 ◽  
Author(s):  
Yanghui Wen ◽  
Hui Su ◽  
Wuke Wang ◽  
Feng Ren ◽  
Haitao Jiang ◽  
...  

Abstract Background: NBEAL2 is a member of the BEACH domain–containing protein (BDCP) family and little is known about the relationship between NBEAL2 and malignancy.Methods: We downloaded the Gene expression profiles and clinical data of Liver hepatocellular carcinoma(LIHC) form the Cancer Genome Atlas (TCGA) dataset. The expression difference of NBEAL2 in LIHC tissues and adjacent nontumor tissues was analyzed by R software. The relationship between NBEAL2 expression and clinicopathological parameters was evaluate by Chi-square test. The effect of NBEAL2 expression on survival were assessed by Kaplan–Meier survival analysis and Cox proportional hazards regression model. GSEA was used to explore the potential molecular mechanism of NBEAL2 in LIHC.Results: Up-regulation of NBEAL2 expression was detected in the LIHC tissue compared with adjacent nontumor tissues(P < 0.001). The chi-square test showed that no significant correlation between the expression level of NBEAL2 and various clinicopathological parameters (including T, N and M classifications) were detected. The Kaplan–Meier curves suggested that lower NBEAL2 expression was related with poor prognosis. The results of Multivariate analysis revealed that a lower expression of NBEAL2 in LIHC was an independent risk of poor overall survival (HR, 8.873; 95% CI, 1.159-67.936; P = 0.035). GSEA suggested that multiple tumor-related metabolic pathways were evidently enriched in samples with the low-NBEAL2 expression phenotype. Conlusion: NBEAL2 might act as an tumor suppressor gene in the progression of LIHC but the precise role of NBELA2 in LIHC needs further vertification.


2019 ◽  
Author(s):  
rui kong ◽  
Nan Wang ◽  
Wei Han ◽  
Yuejuan Zheng ◽  
Jie Lu

Abstract Background: In recent years, long non-coding RNAs (lncRNAs) are emerging as crucial regulators in the immunological process of liver hepatocellular carcinoma (LIHC). Increasing studies have found that some lncRNAs could be used as a diagnostic or therapeutic target for clinical management, but little research has investigated the role of immune-related lncRNA in tumor prognosis. In this study, we aimed to develop an immune lncRNA signature for the precise diagnosis and prognosis of liver hepatocellular carcinoma. Methods: Gene expression profiles of LIHC samples obtained from TCGA were screened for immune-related genes using two reference gene sets. The optimal immune-related lncRNA signature was built via correlational analysis, univariate and multivariate cox analysis. Then the Kaplan-Meier plot, ROC curve, clinical analysis, gene set enrichment analysis, and principal component analysis were carried out to evaluate the capability of immune lncRNA signature as a prognostic indicator. Results: Six long non-coding RNA MSC−AS1, AC009005.1, AL117336.3, AL031985.3, AL365203.2, AC099850.3 were identified via correlation analysis and cox regression analysis considering their interactions with immune genes. Next, tumor samples were separated into two risk groups by the signature with different clinical outcomes. Stratification analysis showed the prognostic ability of this signature acted as an independent factor. The AUC value of ROC curve was 0.779. The Kaplan-Meier method was used in survival analysis and results showed a statistical difference between the two risk groups. The predictive performance of this signature was validated by principal component analysis (PCA). Data from gene set enrichment analysis (GSEA) further unveiled several potential biological processes of these biomarkers may involve in. Conclusion: In summary, the study demonstrated the potential role of the six-lncRNA signature served as an independent prognostic factor for LIHC patients.


Sign in / Sign up

Export Citation Format

Share Document