scholarly journals Identification and Validation of Three Autophagy-Related Long Noncoding RNAs as Prognostic Signature in Cholangiocarcinoma

2021 ◽  
Vol 11 ◽  
Author(s):  
Ya Jun Liu ◽  
Alphonse Houssou Hounye ◽  
Zheng Wang ◽  
Xiaowei Liu ◽  
Jun Yi ◽  
...  

Cholangiocarcinoma (CCA) is featured by common occurrence and poor prognosis. Autophagy is a biological process that has been extensively involved in the progression of tumors. Long noncoding RNAs (lncRNAs) have been discovered to be critical in diagnosing and predicting various tumors. It may be valuable to elaborate autophagy-related lncRNAs (ARlncRNAs) in CCA, and indeed, there are still few studies concerning the role of ARlncRNAs in CCA. Here, a prognostic ARlncRNA signature was constructed to predict the survival outcome of CCA patients. Through identification, three differentially expressed ARlncRNAs (DEARlncRNAs), including CHRM3.AS2, MIR205HG, and LINC00661, were screened and were considered predictive signatures. Furthermore, the overall survival (OS) of patients with high-risk scores was significantly lower than that of patients with low scores. Interestingly, the risk score was an independent factor for the OS of patients with CCA. Moreover, receiver operating characteristic (ROC) curve analysis showed that the screened and constructed prognosis signature for 1 year (AUC = 0.884), 3 years (AUC =0.759), and 5 years (AUC = 0.788) presented a high score of accuracy in predicting OS of CCA patients. Gene set enrichment analysis (GSEA) revealed that the three DEARlncRNAs were significantly enriched in CCA-related signaling pathways, including “pathways of basal cell carcinoma”, “glycerolipid metabolism”, etc. Quantitative real-time PCR (qRT-PCR) showed that expressions of CHRM3.AS2, MIR205HG, and LINC00661 were higher in CCA tissues than those in normal tissues, similar to the trends detected in the CCA dataset. Furthermore, Pearson’s analysis reported an intimate correlation of the risk score with immune cell infiltration, indicating a predictive value of the signature for the efficacy of immunotherapy. In addition, the screened lncRNAs were found to have the ability to modulate the expression of mRNAs by interacting with miRNAs based on the established lncRNA-miRNA-mRNA network. In conclusion, our study develops a novel nomogram with good reliability and accuracy to predict the OS of CCA patients, providing a significant guiding value for developing tailored therapy for CCA patients.

2021 ◽  
Vol 20 ◽  
pp. 153303382199208
Author(s):  
Shufang Wang ◽  
Xinlong Huo

Background: Estrogen-related receptor alpha (ESRRA) was reported to play an important role in multiple biological processes of neoplastic diseases. The roles of ESRRA in endometrial cancer have not been fully investigated yet. Methods: Expression data and clinicopathological data of patients with uteri corpus endometrial carcinoma (UCEC) were obtained from The Cancer Genome Atlas (TCGA). Comprehensive bioinformatics analysis was performed, including receiver operating characteristics (ROC) curve analysis, Kaplan-Meier survival analysis, gene ontology (GO) enrichment analysis, and Gene Set Enrichment Analysis (GSEA). Immunohistochemistry was used to detect the protein expression level of ESRRA and CCK-8 assay was performed to evaluate the effect of ESRRA on the proliferation ability. Results: A total of 552 UCEC tissues and 35 normal tissues were obtained from the TCGA database. The mRNA and protein expression level of ESRRA was highly elevated in UCEC compared with normal tissues, and was closely associated with poor prognosis. ROC analysis indicated a very high diagnostic value of ESRRA for patients with UCEC. GO and GSEA functional analysis showed that ESRRA might be mainly involved in cellular metabolism processes, in turn, tumorigenesis and progression of UCEC. Knockdown of ESRRA inhibited the proliferation of UCEC cells in vitro. Further immune cell infiltration demonstrated that ESRRA enhanced the infiltration level of neutrophil cell and reduced that of T cell (CD4+ naïve), NK cell, and cancer associated fibroblast (CAF). The alteration of immune microenvironment will greatly help in developing immune checkpoint therapy for UCEC. Conclusions: Our study comprehensively analyzed the expression level, clinical value, and possible mechanisms of action of ESRRA in UCEC. These findings showed that ESRRA might be a potential diagnostic and therapeutic target.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Minjie Huang ◽  
Jie Dong ◽  
Haikun Guo ◽  
Minghui Xiao ◽  
Deqian Wang

Abstract Background Dinotefuran (CAS No. 165252–70-0), a neonicotinoid insecticide, has been used to protect various crops against invertebrate pests and has been associated with numerous negative sublethal effects on honey bees. Long noncoding RNAs (lncRNAs) play important roles in mediating various biological and pathological processes, involving transcriptional and gene regulation. The effects of dinotefuran on lncRNA expression and lncRNA function in the honey bee brain are still obscure. Results Through RNA sequencing, a comprehensive analysis of lncRNAs and mRNAs was performed following exposure to 0.01 mg/L dinotefuran for 1, 5, and 10 d. In total, 312 lncRNAs and 1341 mRNAs, 347 lncRNAs and 1458 mRNAs, and 345 lncRNAs and 1155 mRNAs were found to be differentially expressed (DE) on days 1, 5 and 10, respectively. Gene set enrichment analysis (GSEA) indicated that the dinotefuran-treated group showed enrichment in carbohydrate and protein metabolism and immune-inflammatory responses such as glycine, serine and threonine metabolism, pentose and glucuronate interconversion, and Hippo and transforming growth factor-β (TGF-β) signaling pathways. Moreover, the DE lncRNA TCONS_00086519 was shown by fluorescence in situ hybridization (FISH) to be distributed mainly in the cytoplasm, suggesting that it may serve as a competing endogenous RNA and a regulatory factor in the immune response to dinotefuran. Conclusion This study characterized the expression profile of lncRNAs upon exposure to neonicotinoid insecticides in young adult honey bees and provided a framework for further study of the role of lncRNAs in honey bee growth and the immune response.


2020 ◽  
Author(s):  
Bin Wu ◽  
Yi Yao ◽  
Yi Dong ◽  
Si Qi Yang ◽  
Deng Jing Zhou ◽  
...  

Abstract Background:We aimed to investigate an immune-related long non-coding RNA (lncRNA) signature that may be exploited as a potential immunotherapy target in colon cancer. Materials and methods: Colon cancer samples from The Cancer Genome Atlas (TCGA) containing available clinical information and complete genomic mRNA expression data were used in our study. We then constructed immune-related lncRNA co-expression networks to identify the most promising immune-related lncRNAs. According to the risk score developed from screened immune-related lncRNAs, the high-risk and low-risk groups were separated on the basis of the median risk score, which served as the cutoff value. An overall survival analysis was then performed to confirm that the risk score developed from screened immune-related lncRNAs could predict colon cancer prognosis. The prediction reliability was further evaluated in the independent prognostic analysis and receiver operating characteristic curve (ROC). A principal component analysis (PCA) and gene set enrichment analysis (GSEA) were performed for functional annotation. Results: Information for a total of 514 patients was included in our study. After multiplex analysis, 12 immune-related lncRNAs were confirmed as a signature to evaluate the risk scores for each patient with cancer. Patients in the low-risk group exhibited a longer overall survival (OS) than those in the high-risk group. Additionally, the risk scores were an independent factor, and the Area Under Curve (AUC) of ROC for accuracy prediction was 0.726. Moreover, the low-risk and high-risk groups displayed different immune statuses based on principal components and gene set enrichment analysis.Conclusions: Our study suggested that the signature consisting of 12 immune-related lncRNAs can provide an accessible approach to measuring the prognosis of colon cancer and may serve as a valuable antitumor immunotherapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Honglan Guo ◽  
Qinqiao Fan

Background. We aimed to investigate the expression of the hyaluronan-mediated motility receptor (HMMR) gene in hepatocellular carcinoma (HCC) and nonneoplastic tissues and to investigate the diagnostic and prognostic value of HMMR. Method. With the reuse of the publicly available The Cancer Genome Atlas (TCGA) data, 374 HCC patients and 50 nonneoplastic tissues were used to investigate the diagnostic and prognostic values of HMMR genes by receiver operating characteristic (ROC) curve analysis and survival analysis. All patients were divided into low- and high-expression groups based on the median value of HMMR expression level. Univariate and multivariate Cox regression analysis were used to identify prognostic factors. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanism of the HMMR genes involved in HCC. The diagnostic and prognostic values were further validated in an external cohort from the International Cancer Genome Consortium (ICGC). Results. HMMR mRNA expression was significantly elevated in HCC tissues compared with that in normal tissues from both TCGA and the ICGC cohorts (all P values <0.001). Increased HMMR expression was significantly associated with histologic grade, pathological stage, and survival status (all P values <0.05). The area under the ROC curve for HMMR expression in HCC and normal tissues was 0.969 (95% CI: 0.948–0.983) in the TCGA cohort and 0.956 (95% CI: 0.932–0.973) in the ICGC cohort. Patients with high HMMR expression had a poor prognosis than patients with low expression group in both cohorts (all P < 0.001 ). Univariate and multivariate analysis also showed that HMMR is an independent predictor factor associated with overall survival in both cohorts (all P values <0.001). GSEA showed that genes upregulated in the high-HMMR HCC subgroup were mainly significantly enriched in the cell cycle pathway, pathways in cancer, and P53 signaling pathway. Conclusion. HMMR is expressed at high levels in HCC. HMMR overexpression may be an unfavorable prognostic factor for HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yujia Xiong ◽  
Mingxuan Li ◽  
Jiwei Bai ◽  
Yutao Sheng ◽  
Yazhuo Zhang

Glioma is the most common primary intracranial malignant tumor in adults. Although there have been many efforts on potential targeted therapy of glioma, the patient’s prognosis remains dismal. Methyltransferase Like 7B (METTL7B) has been found to affect the development of a variety of tumors. In this study, we collected RNA-seq data of glioma in CGGA and TCGA, analyzed them separately. Then, Kaplan-Meier survival analysis, univariate and multivariate Cox analysis, and receiver operating characteristic curve (ROC curve) analysis were used to evaluate the effect of METTL7B on prognosis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA) enrichment analyses were used to identify the function or pathway associated with METTL7B. Moreover, the ESTIMATE algorithm, Cibersort algorithm, Spearman correlation analysis, and TIMER database were used to explore the relationship between METTL7B and immunity. Finally, the role of METTL7B was explored in glioma cells. We found that METTL7B is highly expressed in glioma, and high expression of METTL7B in glioma is associated with poor prognosis. In addition, there were significant differences in immune scores and immune cell infiltration between the two groups with different expression levels of METTL7B. Moreover, METTL7B was also correlated with immune checkpoints. Knockdown of METTL7B revealed that METTL7B promoted the progression of glioma cells. The above results indicate that METTL7B affects the prognosis of patients and is related to tumor immunity, speculating that METTL7B may be a new immune-related target for the treatment of glioma.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qingshan Tian ◽  
Hanxiao Niu ◽  
Dingyang Liu ◽  
Na Ta ◽  
Qing Yang ◽  
...  

Long noncoding RNAs have gained widespread attention in recent years for their crucial role in biological regulation. They have been implicated in a range of developmental processes and diseases including cancer, cardiovascular, and neuronal diseases. However, the role of long noncoding RNAs (lncRNAs) in left ventricular noncompaction (LVNC) has not been explored. In this study, we investigated the expression levels of lncRNAs in the blood of LVNC patients and healthy subjects to identify differentially expressed lncRNA that develop LVNC specific biomarkers and targets for developing therapies using biological pathways. We used Agilent Human lncRNA array that contains both updated lncRNAs and mRNAs probes. We identified 1,568 upregulated and 1,141 downregulated (log fold-change &gt; 2.0) lncRNAs that are differentially expressed between LVNC and the control group. Among them, RP11-1100L3.7 and XLOC_002730 are the most upregulated and downregulated lncRNAs. Using quantitative real-time reverse transcription polymerase chain reaction (RT-QPCR), we confirmed the differential expression of three top upregulated and downregulated lncRNAs along with two other randomly picked lncRNAs. Gene Ontology (GO) and KEGG pathways analysis with these differentially expressed lncRNAs provide insight into the cellular pathway leading to LVNC pathogenesis. We also identified 1,066 upregulated and 1,017 downregulated mRNAs. Gene set enrichment analysis (GSEA) showed that G2M, Estrogen, and inflammatory pathways are enriched in differentially expressed genes (DEG). We also identified miRNA targets for these differentially expressed genes. In this study, we first report the use of LncRNA microarray to understand the pathogenesis of LVNC and to identify several lncRNA and genes and their targets as potential biomarkers.


2021 ◽  
Vol 10 ◽  
Author(s):  
Yangyang Wang ◽  
Wenjianlong Zhou ◽  
Shunchang Ma ◽  
Xiudong Guan ◽  
Dainan Zhang ◽  
...  

Glycolysis refers to one of the critical phenotypes of tumor cells, regulating tumor cell phenotypes and generating sufficient energy for glioma cells. A range of noticeable genes [such as isocitrate dehydrogenase (IDH), phosphatase, and tensin homolog (PTEN), or Ras] overall impact cell proliferation, invasion, cell cycle, and metastasis through glycolysis. Moreover, long non-coding RNAs (LncRNAs) are increasingly critical to disease progression. Accordingly, this study aimed to identify whether glycolysis-related LncRNAs have potential prognostic value for glioma patients. First, co-expression network between glycolysis-related protein-coding RNAs and LncRNAs was established according to Pearson correlation (Filter: |r| &gt; 0.5 &amp; P &lt; 0.001). Furthermore, based on univariate Cox regression, the Least Absolute Shrinkage and Selection Operator (LASSO) analysis and multivariate Cox regression, a predictive model were built; vital glycolysis-related LncRNAs were identified; the risk score of every single patient was calculated. Moreover, receiver operating characteristic (ROC) curve analysis, gene set enrichment analysis (GSEA), GO and KEGG enrichment analysis were performed to assess the effect of risk score among glioma patients. 685 cases (including RNA sequences and clinical information) from two different cohorts of the Chinese Glioma Genome Atlas (CGGA) database were acquired. Based on the mentioned methods, the risk score calculation formula was yielded as follows: Risk score = (0.19 × EXPFOXD2-AS1) + (−0.27 × EXPAC062021.1) + (−0.16 × EXPAF131216.5) + (−0.05 × EXPLINC00844) + (0.11 × EXPCRNDE) + (0.35 × EXPLINC00665). The risk score was independently related to prognosis, and every single mentioned LncRNAs was significantly related to the overall survival of patients. Moreover, functional enrichment analysis indicated that the biologic process of the high-risk score was mainly involved in the cell cycle and DNA replication signaling pathway. This study confirmed that glycolysis-related LncRNAs significantly impact poor prognosis and short overall survival and may act as therapeutic targets in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhenming Zheng ◽  
Cong Lai ◽  
Wenshuang Li ◽  
Caixia Zhang ◽  
Kaiqun Ma ◽  
...  

BackgroundBoth lncRNAs and glycolysis are considered to be key influencing factors in the progression of bladder cancer (BCa). Studies have shown that glycolysis-related lncRNAs are an important factor affecting the overall survival and prognosis of patients with bladder cancer. In this study, a prognostic model of BCa patients was constructed based on glycolysis-related lncRNAs to provide a point of reference for clinical diagnosis and treatment decisions.MethodsThe transcriptome, clinical data, and glycolysis-related pathway gene sets of BCa patients were obtained from The Cancer Genome Atlas (TCGA) database and the Gene Set Enrichment Analysis (GSEA) official website. Next, differentially expressed glycolysis-related lncRNAs were screened out, glycolysis-related lncRNAs with prognostic significance were identified through LASSO regression analysis, and a risk scoring model was constructed through multivariate Cox regression analysis. Then, based on the median of the risk scores, all BCa patients were divided into either a high-risk or low-risk group. Kaplan-Meier (KM) survival analysis and the receiver operating characteristic (ROC) curve were used to evaluate the predictive power of the model. A nomogram prognostic model was then constructed based on clinical indicators and risk scores. A calibration chart, clinical decision curve, and ROC curve analysis were used to evaluate the predictive performance of the model, and the risk score of the prognostic model was verified using the TCGA data set. Finally, Gene Set Enrichment Analysis (GSEA) was performed on glycolysis-related lncRNAs.ResultsA total of 59 differentially expressed glycolysis-related lncRNAs were obtained from 411 bladder tumor tissues and 19 pericarcinomatous tissues, and 9 of those glycolysis-related lncRNAs (AC099850.3, AL589843.1, MAFG-DT, AC011503.2, NR2F1-AS1, AC078778.1, ZNF667-AS1, MNX1-AS1, and AC105942.1) were found to have prognostic significance. A signature was then constructed for predicting survival in BCa based on those 9 glycolysis-related lncRNAs. ROC curve analysis and a nomogram verified the accuracy of the signature.ConclusionThrough this study, a novel prognostic prediction model for BCa was established based on 9 glycolysis-related lncRNAs that could effectively distinguish high-risk and low-risk BCa patients, and also provide a new point of reference for clinicians to make individualized treatment and review plans for patients with different levels of risk.


2021 ◽  
Author(s):  
Xinyu Gu ◽  
Haibo Zhou ◽  
Qingfei Chu ◽  
Qiuxian Zheng ◽  
Jing Wang ◽  
...  

Abstract Background: 5-Methylcytosine (m5C) plays essential roles in hepatocellular carcinoma (HCC), but the association between m5C regulation and immune cell infiltration in HCC has not yet been clarified.Methods: In this study, we analysed 371 patients with HCC from The Cancer Genome Atlas (TCGA) database, and the expression of 13 m5C regulators was investigated. Additionally, gene set variation analysis (GSVA), unsupervised clustering analysis, single-sample gene set enrichment analysis (ssGSEA), correlation analysis, and immunohistochemical (IHC) staining were performed.Results: Among the 371 patients, 41 had mutations in m5C regulators, the frequency of which was 11.26%. Then, we identified three m5C modification patterns that had obvious tumour microenvironment (TME) cell infiltration characteristics. Cluster-1 had an immune rejection phenotype; Cluster-2 had an immunoinflammatory phenotype; and Cluster-3 had an immune desert phenotype. In addition, we found that DNMT1 was highly expressed in tumour tissues compared with normal tissues in a tissue microarray (TMA) and that it was positively correlated with many TME-infiltrating immune cells. High expression of the m5C regulator DNMT1 was related to a poor prognosis in patients with HCC. Furthermore, we developed three Immu-clusters that were consistent with the immune characteristics of the m5C methylation modification patterns. We also discovered differences in the levels of immune cells and expression of chemokines and cytokines among the three Immu-clusters.Conclusions: Our work revealed the association between m5C modification and immune regulators in the TME. These findings also suggest that DNMT1 has great potential as a prognostic biomarker and therapeutic target for HCC.


2020 ◽  
Author(s):  
Cong Lai ◽  
Zhenyu Wu ◽  
Zhuohang Li ◽  
Hao Yu ◽  
Kuiqing Li ◽  
...  

Abstract Background: Bladder cancer is the second most common malignant tumor in urogenital system. The research aimed to investigate the prognostic role of immune-related long non-coding RNA (lncRNA) in bladder cancer. Methods: We extracted 411 bladder cancer samples from The Cancer Genome Atlas database. Single-sample gene set enrichment analysis was employed to assess the immune cell infiltration of these samples. We recognized differentially expressed lncRNAs between tumors and paracancerous tissues, and differentially expressed lncRNAs between the high and low immune cell infiltration groups. Venn diagram analysis detected differentially expressed lncRNAs that intersected the above groups. LncRNAs with prognostic significance were identified by regression analysis and survival analysis. Multivariate Cox analysis was used to establish the risk score model. The nomogram was established and evaluated by receiver operating characteristic (ROC) curve analysis, concordance index (C-index) analysis, calibration chart, and decision curve analysis (DCA). Additionally, we performed gene set enrichment analysis to explore the potential functions of the screened lncRNAs in tumor pathogenesis.Results: Three hundred and twenty differentially expressed lncRNAs were recognized. We randomly divided patients into the training data set and the testing data set at a 2: 1 ratio. In the training data set, 9 immune-related lncRNAs with prognostic significance were identified. The risk score model was constructed to classify patients as high- and low-risk cohorts. Patients in the low-risk cohort had better survival outcomes than those in the high-risk cohort. The nomogram was established based on the indicators including age, gender, TNM stage, and risk score. The model’s predictive performance was confirmed by ROC curve analysis, C-index analysis, calibration chart, and DCA. The testing data set also achieved similar results. Bioinformatics analysis suggested that the 9-lncRNA signature was involved in modulation of various immune responses, antigen processing and presentation, and T cell receptor signaling pathway.Conclusions: The immune-related lncRNAs have the potential to predict the prognosis of bladder cancer and may play a key role in bladder cancer biology.Trial registration: It was a retrospective study and the gene expression data were obtained from the TCGA database. Trial registration was not needed.


Sign in / Sign up

Export Citation Format

Share Document