scholarly journals Development of Synergy-Based Combination for Learning and Memory Using in vitro, in vivo and TLC-MS-Bioautographic Studies

2021 ◽  
Vol 12 ◽  
Author(s):  
Maaz Ahmed Khan ◽  
Varsha Srivastava ◽  
Mariya Kabir ◽  
Monalisha Samal ◽  
Areeba Insaf ◽  
...  

The present study is aimed at developing a synergistic combination to enhance learning and memory in Alzheimer’s patients with the help of eight common medicinal plants used in the AYUSH system. Aqueous and hydroalcoholic extracts of eight medicinal plants from the AYUSH system of medicine were prepared. These were subjected to in vitro anticholinesterase activity, to find out the combination index of synergistic combination. The synergistic combination and their individual extracts were subjected to total phenol, flavonoid and antioxidant activity estimation. Further, in vivo neurobehavioral studies in rats were carried out followed by TLC-MS-bioautographic identification of bioactive metabolites. Out of the sixteen extracts, aqueous extracts of Withania somnifera (L.) Dunal (WSA) and Myristica fragrans (L.) Dunal (MFA) were selected for the development of synergistic combination based on their IC50 value in vitro anticholinesterase assay. The synergistic combination inhibited the anticholinesterase activity significantly as compared to the individual extracts of WSA and MFA. The synergistic combination also showed more phenolic and flavonoid contents with potential antioxidant activity. The TLC-bioautography showed four white spots in WSA, signifying sitoindosides VII, VIII, quercetin, isopelletierine and Withanolide S as AChE inhibitory compounds while showing five white spots of anti-cholinesterase active metabolites identified as eugenol, methyl eugenol, myristic acid, galbacin and β-sitosterol in MFA. The observation of neurocognitive behavior in amnesia induced subjects manifested that both the synergistic combinations showed comparable results to that of standard piracetam, though the synergistic combination containing a higher concentration of WSA showed more appreciable results in ameliorating dementia in rats. The study suggests that the synergy based combination successfully enhanced memory and learning by abating free radical and acetylcholine levels, and increased learning and memory in rats, providing a strong rationale for its use in the treatment of dementia and Alzheimer’s disease.

2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


2019 ◽  
Vol 5 (3) ◽  
pp. 170-231
Author(s):  
Minky Mukhija ◽  
Bhuwan Chandra Joshi

Background: Peptic ulcer is a deep gastrointestinal erosion disorder that involves the entire mucosal thickness and can even penetrate the muscular mucosa. Nowadays, several plants and compounds derived from it have been screened for their antiulcer activity. In the last few years, there has been an exponential growth in the field of herbal medicine. This field has gained popularity in both developing and developed countries because of their natural origin and less side effects. Objective: This review aims to provide a comprehensive summary of currently available knowledge of medicinal plants and phytoconstituents reported for their anti-ulcer properties. Methods: The worldwide accepted database like SCOPUS, PUBMED, SCIELO, NISCAIR, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar were used to retrieve available published literature. Results: A comprehensive review of the present paper is an attempt to list the plants with antiulcer activity. The review narrates the dire need to explore potential chemical moieties that exert an antiulcer effect, from unexploited traditional plants. Furthermore, the present study reveals the intense requirement to exploit the exact mechanism through which either the plant extracts or their active constituents exhibit their antiulcer properties. Conclusion: This article is the compilation of the plants and its constituents reported for the treatment of peptic ulcers. The Comprehensive data will surely attract the number of investigators to initiate further research that might lead to the drugs for the treatment of ulcers. As sufficient scientific data is not available on plants, most of the herbals cannot be recommended for the treatment of diseases. This can be achieved by research on pure chemical structures derived from plants or to prepare new lead compounds with proven beneficial preclinical in vitro and in vivo effects. However, a lot remains to be done in further investigations for the better status of medicinal plants.


2020 ◽  
Vol 11 (2) ◽  
pp. 1729-1739 ◽  
Author(s):  
Hongxia Che ◽  
Lingyu Zhang ◽  
Lin Ding ◽  
Wancui Xie ◽  
Xiaoming Jiang ◽  
...  

Our previous study showed that EPA-enriched ethanolamine plasmalogen (EPA-pPE) exerted more significant effects than EPA-enriched phosphatidylethanolamine (EPA-PE) in improving learning and memory deficit.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 498
Author(s):  
Mariaevelina Alfieri ◽  
Antonietta Leone ◽  
Alfredo Ambrosone

Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 952
Author(s):  
Małgorzata Chrząszcz ◽  
Barbara Krzemińska ◽  
Rafał Celiński ◽  
Katarzyna Szewczyk

The genus Cephalaria, belonging to the Caprifoliaceae family, is a rich source of interesting secondary metabolites, including mainly saponins which display a variety of biological activities, such as immunomodulatory, antimicrobial and hemolytic effects. Besides these compounds, flavonoids and phenolic acids were identified in Cephalaria species. Cephalaria is employed in traditional medicine e.g., to cure cardiac and lung diseases, rheumatism, and regulate menstruation. In this review we focus on the phenolic compound composition and antioxidative activity of Cephalaria species. The antioxidant effect can be explained by flavonoids present in all parts of these plants. However, future efforts should concentrate more on in vitro and in vivo studies and also on clinical trials in order to confirm the possibility of using these plants as natural antioxidants for the pharmacology, food or cosmetic industries.


2021 ◽  
Vol 19 (1) ◽  
pp. 228-237
Author(s):  
Yulong Zhang ◽  
Xueying Chen ◽  
Ping Hu ◽  
Qianwei Liao ◽  
Yong Luo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document