scholarly journals Kidney Organoid and Microphysiological Kidney Chip Models to Accelerate Drug Development and Reduce Animal Testing

2021 ◽  
Vol 12 ◽  
Author(s):  
Wei-Yang Chen ◽  
Eric A Evangelista ◽  
Jade Yang ◽  
Edward J Kelly ◽  
Catherine K Yeung

Kidneys are critical for the elimination of many drugs and metabolites via the urine, filtering waste and maintaining proper fluid and electrolyte balance. Emerging technologies incorporating engineered three-dimensional (3D) in vitro cell culture models, such as organoids and microphysiological systems (MPS) culture platforms, have been developed to replicate nephron function, leading to enhanced efficacy, safety, and toxicity evaluation of new drugs and environmental exposures. Organoids are tiny, self-organized three-dimensional tissue cultures derived from stem cells that can include dozens of cell types to replicate the complexity of an organ. In contrast, MPS are highly controlled fluidic culture systems consisting of isolated cell type(s) that can be used to deconvolute mechanism and pathophysiology. Both systems, having their own unique benefits and disadvantages, have exciting applications in the field of kidney disease modeling and therapeutic discovery and toxicology. In this review, we discuss current uses of both hPSC-derived organoids and MPS as pre-clinical models for studying kidney diseases and drug induced nephrotoxicity. Examples such as the use of organoids to model autosomal dominant polycystic kidney disease, and the use of MPS to predict renal clearance and nephrotoxic concentrations of novel drugs are briefly discussed. Taken together, these novel platforms allow investigators to elaborate critical scientific questions. While much work needs to be done, utility of these 3D cell culture technologies has an optimistic outlook and the potential to accelerate drug development while reducing the use of animal testing.

2018 ◽  
Vol 373 (1750) ◽  
pp. 20170225 ◽  
Author(s):  
Grace E. Brown ◽  
Salman R. Khetani

Drug-induced liver- and cardiotoxicity remain among the leading causes of preclinical and clinical drug attrition, marketplace drug withdrawals and black-box warnings on marketed drugs. Unfortunately, animal testing has proven to be insufficient for accurately predicting drug-induced liver- and cardiotoxicity across many drug classes, likely due to significant differences in tissue functions across species. Thus, the field of in vitro human tissue engineering has gained increasing importance over the last 10 years. Technologies such as protein micropatterning, microfluidics, three-dimensional scaffolds and bioprinting have revolutionized in vitro platforms as well as increased the long-term phenotypic stability of both primary cells and stem cell-derived differentiated cells. Here, we discuss advances in engineering approaches for constructing in vitro human liver and heart models with utility for drug development. Design features and validation data of representative models are presented to highlight major trends followed by the discussion of pending issues. Overall, bioengineered liver and heart models have significantly advanced our understanding of organ function and injury, which will prove useful for mitigating the risk of drug-induced organ toxicity to human patients, reducing animal usage for preclinical drug testing, aiding in the discovery of novel therapeutics against human diseases, and ultimately for applications in regenerative medicine. This article is part of the theme issue ‘Designer human tissue: coming to a lab near you’.


2021 ◽  
Vol 22 (5) ◽  
pp. 2491
Author(s):  
Yujin Park ◽  
Kang Moo Huh ◽  
Sun-Woong Kang

The process of evaluating the efficacy and toxicity of drugs is important in the production of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical and ethical limitations. To overcome these limitations, various models have been developed in which responses to various external stimuli can be observed to help guide future trials. In particular, three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological functions of tissues in the human body. This article reviews the biomaterials currently used to improve cellular functions in 3D culture and the contributions of 3D culture to cancer research, stem cell culture and drug and toxicity screening.


2014 ◽  
Vol 83 (1) ◽  
pp. 28-38 ◽  
Author(s):  
Teresa M. DesRochers ◽  
Erica Palma Kimmerling ◽  
Dakshina M. Jandhyala ◽  
Wassim El-Jouni ◽  
Jing Zhou ◽  
...  

Shiga toxins (Stx) are a family of cytotoxic proteins that can cause hemolytic-uremic syndrome (HUS), a thrombotic microangiopathy, following infections by Shiga toxin-producingEscherichia coli(STEC). Renal failure is a key feature of HUS and a major cause of childhood renal failure worldwide. There are currently no specific therapies for STEC-associated HUS, and the mechanism of Stx-induced renal injury is not well understood primarily due to a lack of fully representative animal models and an inability to monitor disease progression on a molecular or cellular level in humans at early stages. Three-dimensional (3D) tissue models have been shown to be morein vivo-like in their phenotype and physiology than 2D cultures for numerous disease models, including cancer and polycystic kidney disease. It is unknown whether exposure of a 3D renal tissue model to Stx will yield a morein vivo-like response than 2D cell culture. In this study, we characterized Stx2-mediated cytotoxicity in a bioengineered 3D human renal tissue model previously shown to be a predictor of drug-induced nephrotoxicity and compared its response to Stx2 exposure in 2D cell culture. Our results demonstrate that although many mechanistic aspects of cytotoxicity were similar between 3D and 2D, treatment of the 3D tissues with Stx resulted in an elevated secretion of the kidney injury marker 1 (Kim-1) and the cytokine interleukin-8 compared to the 2D cell cultures. This study represents the first application of 3D tissues for the study of Stx-mediated kidney injury.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Mahnaz Maddah ◽  
Kevin Loewke

A promising application of induced pluripotent stem cells (iPSCs) is the generation of patient-specific cardiomyocytes (CMs), which can be used for drug development and safety testing related to cardiovascular health. iPSC-derived CMs can be used for preclinical testing of new drugs that may cause drug-induced arrhythmia or long QT syndrome, as well as post-market safety testing of existing drugs. The measurement of QT interval for iPSC-derived CMs is commonly analyzed using electrophysiological potentials captured by a micro-electrode array (MEA). While such systems are the current standard for characterization, they can be expensive and low-throughput, require high cell plating density, and due to the direct contact between cells and electrodes, may cause undesirable cellular response. Here, we present a new method to non-invasively measure the QT-interval in iPSC-derived CMs using video microscopy and computer vision analysis. Our algorithms can reliably and automatically extract beating signal characteristics such as frequency, irregularity, and duration through image analysis of cardiomyocyte motion. Through a correlative study with MEA, we demonstrate that a non-invasive measurement of QT interval can be derived from the duration of visible cellular motion that occurs during contraction and relaxation. We also show that our system can accurately characterize the cellular response from the addition of compounds known to modulate beating frequency and irregularity. Our measurement technique is robust, automated, and requires no physical or chemical contact with the cells, making it ideal for cardiovascular drug development and cardiotoxicity testing.


2019 ◽  
Author(s):  
Elinor Gottschalk ◽  
Eric Czech ◽  
Bulent Arman Aksoy ◽  
Pinar Aksoy ◽  
Jeff Hammerbacher

AbstractThree-dimensional (3D) cell culture systems with tumor spheroids are being adopted for research on the antitumor activity of drug treatments and cytotoxic T cells. Analysis of the cytotoxic effect on 3D tumor cultures within a 3D scaffold, such as collagen, is challenging. Image-based approaches often use confocal microscopy, which greatly limits the sample size of tumor spheroids that can be assayed. We explored a system where tumor spheroids growing in a collagen gel within a microfluidics chip can be treated with drugs or co-cultured with T cells. We attempted to adapt the system to measure the death of cells in the tumor spheroids directly in the microfluidics chip via automated widefield fluorescence microscopy. We were able to successfully measure drug-induced cytotoxicity in tumor spheroids, but had difficulties extending the system to measure T cell-mediated tumor killing.Abstract Figure


2019 ◽  
Author(s):  
Mohan Acharya ◽  
Komala Arsi ◽  
Annie Donoghue ◽  
Rohana Liyanage ◽  
Narayan C Rath

Abstract Background: Three-dimensional models of cell culture such as organoids and mini organs accord better advantage over regular cell culture because of their ability to simulate organ functions hence, used for disease modeling, metabolic research, and the development of therapeutics strategies. However, most advances in this area are limited to mammalian species with little progress in others such as poultry where it can be deployed to study problems of agricultural importance. In the course of enterocyte culture in chicken, we observed that intestinal mucosal villus-crypts self-repair and lead to the formation of enteroid-like structures which appeared to be useful as ex vivo models to study enteric physiology and diseases. Results: The villus-crypts harvested from chicken intestinal mucosa were cultured to generate enteroids, purified by filtration then re cultured with different chemicals and growth factors to assess their response based on their morphological dispositions. Histochemical analyses using marker antibodies and probes showed the enteroids consisting different cells such as epithelial, goblet, and enteroendocrine cells typical to villi and retain functional characteristics of intestinal mucosa. Conclusions: The villus enteroids can simulate villus functions with their absorptive cells functionally positioned and exposed to culture medium thus, can help understand the mechanisms of nutrient uptake and their regulation, interactions with alien organisms, and amenable to assays of the factors that may affect gut health.


Author(s):  
Ana S. Serras ◽  
Joana S. Rodrigues ◽  
Madalena Cipriano ◽  
Armanda V. Rodrigues ◽  
Nuno G. Oliveira ◽  
...  

The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yunlong Li ◽  
Kuai Ma ◽  
Zhongyu Han ◽  
Mingxuan Chi ◽  
Xiyalatu Sai ◽  
...  

Kidney disease is a general term for heterogeneous damage that affects the function and the structure of the kidneys. The rising incidence of kidney diseases represents a considerable burden on the healthcare system, so the development of new drugs and the identification of novel therapeutic targets are urgently needed. The pathophysiology of kidney diseases is complex and involves multiple processes, including inflammation, autophagy, cell-cycle progression, and oxidative stress. Heme oxygenase-1 (HO-1), an enzyme involved in the process of heme degradation, has attracted widespread attention in recent years due to its cytoprotective properties. As an enzyme with known anti-oxidative functions, HO-1 plays an indispensable role in the regulation of oxidative stress and is involved in the pathogenesis of several kidney diseases. Moreover, current studies have revealed that HO-1 can affect cell proliferation, cell maturation, and other metabolic processes, thereby altering the function of immune cells. Many strategies, such as the administration of HO-1-overexpressing macrophages, use of phytochemicals, and carbon monoxide-based therapies, have been developed to target HO-1 in a variety of nephropathological animal models, indicating that HO-1 is a promising protein for the treatment of kidney diseases. Here, we briefly review the effects of HO-1 induction on specific immune cell populations with the aim of exploring the potential therapeutic roles of HO-1 and designing HO-1-based therapeutic strategies for the treatment of kidney diseases.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2754 ◽  
Author(s):  
Teruki Nii ◽  
Kimiko Makino ◽  
Yasuhiko Tabata

Anticancer drug screening is one of the most important research and development processes to develop new drugs for cancer treatment. However, there is a problem resulting in gaps between the in vitro drug screening and preclinical or clinical study. This is mainly because the condition of cancer cell culture is quite different from that in vivo. As a trial to mimic the in vivo cancer environment, there has been some research on a three-dimensional (3D) culture system by making use of biomaterials. The 3D culture technologies enable us to give cancer cells an in vitro environment close to the in vivo condition. Cancer cells modified to replicate the in vivo cancer environment will promote the biological research or drug discovery of cancers. This review introduces the in vitro research of 3D cell culture systems with biomaterials in addition to a brief summary of the cancer environment.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1066
Author(s):  
Akram Abdo Almansoori ◽  
Bongju Kim ◽  
Jong-Ho Lee ◽  
Simon D. Tran

Oral mucosa and salivary gland are composed of complex and dynamic networks of extracellular matrix, multiple cell types, vasculature, and various biochemical agents. Two-dimensional (2D) cell culture is commonly used in testing new drugs and experimental therapies. However, 2D cell culture cannot fully replicate the architecture, physiological, and pathological microenvironment of living human oral mucosa and salivary glands. Recent microengineering techniques offer state of the science cell culture models that can recapitulate human organ structures and functions. This narrative review describes emerging in vitro models of oral and salivary gland tissue such as 3D cell culture models, spheroid and organoid models, tissue-on-a-chip, and functional decellularized scaffolds. Clinical applications of these models are also discussed in this review.


Sign in / Sign up

Export Citation Format

Share Document