scholarly journals Design of a Multilayer Dual-Band Balanced Bandpass Filter on a Circular Patch Resonator

2021 ◽  
Vol 9 ◽  
Author(s):  
Yanhui Xu ◽  
Zhengkang Liu ◽  
Shiyan Wang ◽  
Wanchun Tang ◽  
Junxin Chen

This letter presents a novel multilayer dual-band balanced bandpass filter (BPF) design by using two perturbed circular patch resonators. The TM11 mode and TM21 mode of the resonator with odd-symmetric field distributions are explored to realize the desired differential-mode (DM) transmission and common-mode (CM) suppression. Two circular patches are properly coupled in the back-to-back form to realize a dual-passband balanced response by virtue of coupling apertures etched on the ground. In addition to the internal coupling, the above apertures are also further utilized for the undesired degenerate mode harmonic suppression. Besides, slot perturbations on the patch are introduced to perturb the TM21 resonant mode to independently adjust the center frequency of the higher passband, while the lower passband remains almost unchanged. Thus, two passbands can be flexibly controlled by simultaneously tuning the above slots and size of the patch. For validation, a dual-band balanced BPF prototype is implemented. The results indicate 18 and 26% wide fractional bandwidths centered at 5.5 and 7.5 GHz with return loss higher than 20 dB under DM operation and CM suppression higher than 40 dB over an ultra-wide frequency band.

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sheng Zhang ◽  
Chao Ji ◽  
Meng-Han Tong ◽  
Zhen-Jiang Xie ◽  
Cong Xu

Abstract A compact dual-band balanced bandpass filter with high frequency selectivity and adjustable passband based on the perturbed circular substrate integrated waveguide cavity is firstly proposed in this paper. Two pairs of metallic vias are located at 45°direction of cavities to separate a pair of degenerate modes (TM110 modes) to achieve the differential-mode (DM) dual-band response. Moreover, the perturbation vias can also be used to control the center frequency of the second DM passband while the first one still stays unaffected. The introduction of source-load coupling makes the filter exhibit excellent selectivity. And four controllable transmission zeros appear near two DM passbands. Finally, good common-mode suppression has been got owing to the proposed balanced structure. The measured results are in accordance with the simulated ones well.


Frequenz ◽  
2020 ◽  
Vol 74 (7-8) ◽  
pp. 263-270
Author(s):  
Cao Zeng ◽  
Xue Han Hu ◽  
Feng Wei ◽  
Xiao Wei Shi

AbstractIn this paper, a tunable balanced-to-balanced in-phase filtering power divider (FPD) is designed, which can realize a two-way equal power division with high selectivity and isolation. A differential-mode (DM) passband with a steep filtering performance is realized by applying microstrip stub-loaded resonators (SLRs). Meanwhile, six varactors are loaded to the SLRs to achieve the center frequency (CF) and bandwidth adjustment, respectively. U-type microstrip lines integrated with stepped impedance slotline resonators are utilized as the differential feedlines, which suppress the common-mode (CM) intrinsically, making the DM responses independent of the CM ones. A tuning center frequency from 3.2 to 3.75 GHz and a fractional bandwidth (12.1–17.6%) with more than 10 dB return loss and less than 2.3 dB insertion loss can be achieved by changing the voltage across the varactors. A good agreement between the simulated and measured results is observed. To the best of authors' knowledge, the proposed balanced-to-balanced tunable FPD is first ever reported.


This paper presents design and analytical model for Sharp Skirt Dual-Mode Bandpass Filter for RF receivers. Proposed filter is designed using open stub loaded H shaped resonator. Based on analytical model insertion loss S21 and return loss S11 for proposed filter are demonstrated. Inductive Overlaying plate is proposed to control upper passband edge of proposed filter to improve frequency selectivity with fixed center frequency. The proposed filter has sharp frequency selective range from 5.1GHz to 9.2GHz. With overlay plate, frequency selective range is tuned to 5.1GHz-8.6GHz. Without overlaying plate the proposed filter has return loss greater than 10dB and insertion loss of 0.7dB. Lower and upper passband edges are at 5.1GHz and 9.2GHz with attenuation level of 52dB and 54dB respectively. With overlaying plate, the filter has same S 11 and S 21 parameters, but upper passband edge is shifted from 9.2GHz to 8.6GHz


2021 ◽  
Vol 10 (1) ◽  
pp. 232-240
Author(s):  
Mussa Mabrok ◽  
Zahriladha Zakaria ◽  
Yully Erwanti Masrukin ◽  
Tole Sutikno ◽  
Hussein Alsariera

Due to the progression growth of multiservice wireless communication systems in a single device, multiband bandpass filter has attract a great attention to the end user. Therefore, multiband bandpass filter is a crucial component in the multiband transceivers systems which can support multiple services in one device. This paper presents a design of dual-band bandpass filter at 2.4 GHz and 3.5 GHz for WLAN and WiMAX applications. Firstly, the wideband bandpass filter is designed at a center frequency of 3 GHz based on quarter-wavelength short circuited stub. Three types of defected microstrip structure (DMS) are implemented to produce a wide notch band, which are T-inversed shape, C-shape, and U- Shape. Based on the performance comparisons, U-shaped DMS is selected to be integrated with the bandpass filter. The designed filter achieved two passbands centered at 2.51 GHz and 3.59 GHz with 3 dB bandwidth of 15.94 % and 15.86 %. The proposed design is very useful for wireless communication systems and its applications such as WLAN and WiMAX 


2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000050-000053
Author(s):  
Alexander Schulz ◽  
Sven Rentsch ◽  
Lei Xia ◽  
Robert Mueller ◽  
Jens Mueller

This paper presents a low loss fully embedded bandpass filter (BPF) using low temperature co-fired ceramic (LTCC) for multilayer System-in-Package (SiP) and Multi-Chip-Module (MCM) applications, e.g. wireless applications for the unlicensed 60 GHz band. The measured insertion loss was 1.5 dB at the center frequency 58 GHz, and a return loss of less than −10 dB was achieved, including two grounded coplanar waveguide transmission line (CPWg) to stripline transitions. The four layers BPF has a 3 dB bandwidth of about 11 GHz which supplies e.g. broadband and high data rate applications. The whole BPF requires a substrate area of 5.6 × 2.1 × 0.42 mm3 with transitions and a shielding via fence. This BPF suits well for V-band applications in a LTCC package because of the compact dimensions and the good performance.


2013 ◽  
Vol 655-657 ◽  
pp. 1614-1618
Author(s):  
Wen Ko ◽  
Man Long Her ◽  
Yu Lin Wang ◽  
Ming Wei Hsu

This paper studies a very simple structure for dual-band bandpass filter. Filter is composed of two asymmetric coupled resonator circuit by two sets of different size stepped impedance resonator. This circuit applied microstrip line, coupling principle and impedance ratio by controlling the stepped impedance resonator to control the center frequency 2.6/5.2 GHz of the first and the second bandpass filter. The basic structure of the filter is constituted by the three sections of transmission line and two sets of SIR, that is, in two gaps of the three sections of transmission line parallel connection the equivalent inductances and capacitor of the two sets of SIR in series with the resonant circuit (LCL) to constitute bandpass filter. The low frequency 2.6 GHz is through the upper half of low impedance SIR, and the high frequency 5.2 GHz is through the lower half of high impedance SIR. This paper presents the design of asymmetric SIR-based dual-band bandpass filter, the filter structure is simple, easy to produce and can control the characteristics of the passband center frequency. By electromagnet simulation software( IE3D ) to simulate, the actual production of the circuit using a vector analyzer measurement, simulation and measurement results show good consistency.


2013 ◽  
Vol 321-324 ◽  
pp. 376-382
Author(s):  
Ming Wei Hsu ◽  
Man Long Her ◽  
Wen Ko ◽  
Yu Lin Wang

In this paper, two types of miniaturized dual-mode bandpass filters (BPF), a single-ring (SR) resonator, and a double-ring (DR) resonator are developed. By applying the capacitive-coupling technique to a dual-mode ring filter, a technique is proposed to miniaturize the dual-mode double-ring filter. An adjustable dual-band bandpass filter is achieved by developing a ring resonator where the two modes are capacitively coupled. Control of the filter center frequency is determined by the diameter of the ring and by the rings annular width. Filter coupling amount can also be adjusted by disturbance (perturbation) of an open stub attached to the annular disc. Proposed filters explore both single- and double-ring architectures. A single-ring resonator acting as a dual bandpass filter to allow 3.8 GHz and 7.8 GHz single is developed. A double-ring resonator to allow 2.05 GHz and 3.9 GHz signals is also developed. The ring resonators are fabricated on RO-4003 substrate, with relative dielectric constant of 3.38, thickness of 0.8 mm, and dielectric loss tangent of 0.0025. Results indicate the filters can be applied in the communications field.


2021 ◽  
Vol 9 (2) ◽  
pp. 83-90
Author(s):  
Salah I. Yahya ◽  
Abbas Rezaei ◽  
Yazen A. Khaleel

A novel configuration of a dual-band bandpass filter (BPF) working as a harmonic attenuator is introduced and fabricated. The proposed filter operates at 3 GHz, for UHF and SHF applications, and 6.3 GHz, for wireless applications. The presented layout has a symmetric structure, which consists of coupled resonators. The designing of the proposed resonator is performed by introducing a new LC equivalent model of coupled lines. To verify the LC model of the coupled lines, the lumped elements are calculated. The introduced filter has a wide stopband up to 85 GHz with 28th harmonic suppression, for the first channel, and 13th harmonic suppression, for the second channel. The harmonics are attenuated using a novel structure. Also, the proposed BPF has a compact size of 0.056 λg2. Having several transmission zeros (TZs) that improve the performance of the presented BPF is another feature. The proposed dual-band BPF is fabricated and measured to verify the design method, where the measurement results confirm the simulations.


2017 ◽  
Vol 7 (4) ◽  
pp. 1786-1790
Author(s):  
M. Abdul-Niby ◽  
M. Farhat ◽  
M. Nahas ◽  
Μ. Μ. Alomari

This paper presents a planar tri-band bandpass filter with high out-of-band rejection over a wide band. The filter is based on two pairs of λ/4 resonators embedded inside an open loop ring resonator without any size increase, where each pair of resonators are electromagnetically coupled to each other and the feedlines. This results in the excitations of passbands, where the first passband is generated by the open loop resonators. The second and the third passbands are excited by λ/4 resonators. The proposed technique provides sufficient degrees of freedom to control the center frequency and bandwidth of the three passbands independently. In addition, the six transmission zeros created around the passbands results in a tri-band filter with high selectivity, sharp 3 dB cut-off frequency, high isolation, low passband insertion-loss and high out-of-band harmonic rejection across an ultra-broadband frequency range up to 17 GHz. The proposed technique has the ability to switch from triple to dual band by removing one pair of the inner resonators. Design methodology and simulation results of the filter are provided.


Sign in / Sign up

Export Citation Format

Share Document