scholarly journals Olfaction-Related Gene Expression in the Antennae of Female Mosquitoes From Common Aedes aegypti Laboratory Strains

2021 ◽  
Vol 12 ◽  
Author(s):  
Soumi Mitra ◽  
Matthew Pinch ◽  
Yashoda Kandel ◽  
Yiyi Li ◽  
Stacy D. Rodriguez ◽  
...  

Adult female mosquitoes rely on olfactory cues like carbon dioxide and other small molecules to find vertebrate hosts to acquire blood. The molecular physiology of the mosquito olfactory system is critical for their host preferences. Many laboratory strains of the yellow fever mosquito Aedes aegypti have been established since the late 19th century. These strains have been used for most molecular studies in this species. Some earlier comparative studies have identified significant physiological differences between different laboratory strains. In this study, we used a Y-tube olfactometer to determine the attraction of females of seven different strains of Ae. aegypti to a human host: UGAL, Rockefeller, Liverpool, Costa Rica, Puerto Rico, and two odorant receptor co-receptor (Orco) mutants Orco2 and Orco16. We performed RNA-seq using antennae of Rockefeller, Liverpool, Costa Rica, and Puerto Rico females. Our results showed that female Aedes aegypti from the Puerto Rico strain had significantly reduced attraction rates toward human hosts compared to all other strains. RNA-seq analyses of the antenna transcriptomes of Rockefeller, Liverpool, Costa Rica, and Puerto Rico strains revealed distinct differences in gene expression between the four strains, but conservation in gene expression patterns of known human-sensing genes. However, we identified several olfaction-related genes that significantly vary between strains, including receptors with significantly different expression in mosquitoes from the Puerto Rico strain and the other strains.

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 360
Author(s):  
Guodong Rao ◽  
Jianguo Zhang ◽  
Xiaoxia Liu ◽  
Xue Li ◽  
Chenhe Wang

Olive oil has been favored as high-quality edible oil because it contains balanced fatty acids (FAs) and high levels of minor components. The contents of FAs and minor components are variable in olive fruits of different color at harvest time, which render it difficult to determine the optimal harvest strategy for olive oil producing. Here, we combined metabolome, Pacbio Iso-seq, and Illumina RNA-seq transcriptome to investigate the association between metabolites and gene expression of olive fruits at harvest time. A total of 34 FAs, 12 minor components, and 181 other metabolites (including organic acids, polyols, amino acids, and sugars) were identified in this study. Moreover, we proposed optimal olive harvesting strategy models based on different production purposes. In addition, we used the combined Pacbio Iso-seq and Illumina RNA-seq gene expression data to identify genes related to the biosynthetic pathways of hydroxytyrosol and oleuropein. These data lay the foundation for future investigations of olive fruit metabolism and gene expression patterns, and provide a method to obtain olive harvesting strategies for different production purposes.


2020 ◽  
pp. 160-170
Author(s):  
John Vivian ◽  
Jordan M. Eizenga ◽  
Holly C. Beale ◽  
Olena M. Vaske ◽  
Benedict Paten

PURPOSE Many antineoplastics are designed to target upregulated genes, but quantifying upregulation in a single patient sample requires an appropriate set of samples for comparison. In cancer, the most natural comparison set is unaffected samples from the matching tissue, but there are often too few available unaffected samples to overcome high intersample variance. Moreover, some cancer samples have misidentified tissues of origin or even composite-tissue phenotypes. Even if an appropriate comparison set can be identified, most differential expression tools are not designed to accommodate comparisons to a single patient sample. METHODS We propose a Bayesian statistical framework for gene expression outlier detection in single samples. Our method uses all available data to produce a consensus background distribution for each gene of interest without requiring the researcher to manually select a comparison set. The consensus distribution can then be used to quantify over- and underexpression. RESULTS We demonstrate this method on both simulated and real gene expression data. We show that it can robustly quantify overexpression, even when the set of comparison samples lacks ideally matched tissue samples. Furthermore, our results show that the method can identify appropriate comparison sets from samples of mixed lineage and rediscover numerous known gene-cancer expression patterns. CONCLUSION This exploratory method is suitable for identifying expression outliers from comparative RNA sequencing (RNA-seq) analysis for individual samples, and Treehouse, a pediatric precision medicine group that leverages RNA-seq to identify potential therapeutic leads for patients, plans to explore this method for processing its pediatric cohort.


BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Mariangela Bonizzoni ◽  
W Augustine Dunn ◽  
Corey L Campbell ◽  
Ken E Olson ◽  
Michelle T Dimon ◽  
...  

2015 ◽  
Author(s):  
Carl J Schmdt ◽  
Elizabeth M Pritchett ◽  
Liang Sun ◽  
Richard V.N. Davis ◽  
Allen Hubbard ◽  
...  

Transcriptome analysis by RNA-seq has emerged as a high-throughput, cost-effective means to evaluate the expression pattern of genes in organisms. Unlike other methods, such as microarrays or quantitative PCR, RNA-seq is a target free method that permits analysis of essentially any RNA that can be amplified from a cell or tissue. At its most basic, RNA-seq can determine individual gene expression levels by counting the number of times a particular transcript was found in the sequence data. Transcript levels can be compared across multiple samples to identify differentially expressed genes and infer differences in biological states between the samples. We have used this approach to examine gene expression patterns in chicken and human cells, with particular interest in determining response to heat stress.


2020 ◽  
Author(s):  
Hiroto Yamamoto ◽  
Yutaro Uchida ◽  
Tomoki Chiba ◽  
Ryota Kurimoto ◽  
Takahide Matsushima ◽  
...  

AbstractBackgroundsSevoflurane is a most frequently used volatile anaesthetics, but its molecular mechanisms of action remain unclear. We hypothesized that specific genes play regulatory roles in whole brain exposed to sevoflurane. Thus, we aimed to evaluate the effects of sevoflurane inhalation and identify potential regulatory genes by RNA-seq analysis.MethodsEight-week old mice were exposed to sevoflurane. RNA from four medial prefrontal cortex, striatum, hypothalamus, and hippocampus were analysed using RNA-seq. Differently expressed genes were extracted. Their gene ontology terms and the transcriptome array data of the cerebral cortex of sleeping mice were analysed using Metascape, and the gene expression patterns were compared. Finally, the activities of transcription factors were evaluated using a weighted parametric gene set analysis (wPGSA). JASPAR was used to confirm the existence of binding motifs in the upstream sequences of the differently expressed genes.ResultsThe gene ontology term enrichment analysis result suggests that sevoflurane inhalation upregulated angiogenesis and downregulated neural differentiation in the whole brain. The comparison with the brains of sleeping mice showed that the gene expression changes were specific to anaesthetized mice. Sevoflurane induced Klf4 upregulation in the whole brain. The transcriptional analysis result suggests that KLF4 is a potential transcriptional regulator of angiogenesis and neural development.ConclusionsKlf4 was upregulated by sevoflurane inhalation in whole brain. KLF4 might promote angiogenesis and cause the appearance of undifferentiated neural cells by transcriptional regulation. The roles of KLF4 might be key to elucidating the mechanisms of sevoflurane induced functional modification in the brain.


2021 ◽  
Author(s):  
Jakub Jankowski ◽  
Hye Kyung Lee ◽  
Julia Wilflingseder ◽  
Lothar Hennighausen

SummaryRecently, a short, interferon-inducible isoform of Angiotensin-Converting Enzyme 2 (ACE2), dACE2 was identified. ACE2 is a SARS-Cov-2 receptor and changes in its renal expression have been linked to several human nephropathies. These changes were never analyzed in context of dACE2, as its expression was not investigated in the kidney. We used Human Primary Proximal Tubule (HPPT) cells to show genome-wide gene expression patterns after cytokine stimulation, with emphasis on the ACE2/dACE2 locus. Putative regulatory elements controlling dACE2 expression were identified using ChIP-seq and RNA-seq. qRT-PCR differentiating between ACE2 and dACE2 revealed 300- and 600-fold upregulation of dACE2 by IFNα and IFNβ, respectively, while full length ACE2 expression was almost unchanged. JAK inhibitor ruxolitinib ablated STAT1 and dACE2 expression after interferon treatment. Finally, with RNA-seq, we identified a set of genes, largely immune-related, induced by cytokine treatment. These gene expression profiles provide new insights into cytokine response of proximal tubule cells.


2017 ◽  
Author(s):  
John M Bryan ◽  
Temesgen D Fufa ◽  
Kapil Bharti ◽  
Brian P Brooks ◽  
Robert B Hufnagel ◽  
...  

AbstractThe human eye is built from several specialized tissues which direct, capture, and pre-process information to provide vision. The gene expression of the different eye tissues has been extensively profiled with RNA-seq across numerous studies. Large consortium projects have also used RNA-seq to study gene expression patterning across many different human tissues, minus the eye. There has not been an integrated study of expression patterns from multiple eye tissues compared to other human body tissues. We have collated all publicly available healthy human eye RNA-seq datasets as well as dozens of other tissues. We use this fully integrated dataset to probe the biological processes and pan expression relationships between the cornea, retina, RPE-choroid complex, and the rest of the human tissues with differential expression, clustering, and GO term enrichment tools. We also leverage our large collection of retina and RPE-choroid tissues to build the first human weighted gene correlation networks and use them to highlight known biological pathways and eye gene disease enrichment. We also have integrated publicly available single cell RNA-seq data from mouse retina into our framework for validation and discovery. Finally, we make all these data, analyses, and visualizations available via a powerful interactive web application (https://eyeintegration.nei.nih.gov/).


2020 ◽  
Author(s):  
Tian-ao Xie ◽  
Ke-ying Fang ◽  
Wen-chao Cao ◽  
Jie Lv ◽  
Jia-xin Chen ◽  
...  

Abstract BackgroundStaphylococcus aureus-induced bacteremia has an impact on human health due to its high mortality rate of 20–30%. To better study the invasion process of staphylococcus aureus, we conducted a study in human endothelial cells to try to find a link between the infection process and bacteremia at the molecular level.MethodsIn this study, the datasets GSE13736, GSE82036 were analyzed using R software to identify differentially expressed genes. Only the infection samples of four different strains had differential gene expression compared to the control samples. Then the GO analysis and KEGG analysis were conducted to construct a protein-protein interaction (PPI) network which shows the interaction and influence relationship between these differential genes. Finally, the central gene of the selected CytoHubba plug-in was verified using GraphPad Prism 8.ResultsThere were 421 differential genes in the Strain 6850, including 64 up-regulated and 357 down-regulated; There were 319 differential genes in the Strain 8325-4, including 14 up-regulated and 305 down-regulated. There were 90 differential genes in the Strain K70058396, including 12 up-regulated and 78 down-regulated. There were 876 differential genes in the Strain K1801/10, accompanied by 261 up-regulated and 615 down-regulated. An analysis of GO and KEGG revealed that these differentially expressed genes were significantly enriched in pathways associated with immune response and cytokines; Verification of the hub gene can provide a molecular basis for studying the relationship between invasive endothelial infection and bacteremia.ConclusionsWe found specific gene expression patterns in endothelial cells in response to infection with Strain K70058396, and these central genes and their expression products (RSAD2, DDX58, IFITT3, and IFIH1) play a key role in this process of infection.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4969-4969
Author(s):  
Laura Laine Herborg ◽  
Marcus Celik Hansen ◽  
Maria Hansen ◽  
Anne Stidsholt Roug ◽  
Peter Hokland

Abstract Introduction Despite the discovery of new genetic alterations the cytogenetically normal acute myeloid leukemia (CN-AML) subset is still insufficiently characterized. As mRNA-sequencing (RNA-seq) is becoming more accessible, sequencing of the transcriptome could reveal not only information regarding deregulated expression patterns in leukemias, but also enable mutational evaluation of expressed alleles. To address this issue we performed RNA-seq of 5 AML patients from diagnostic bone marrow aspirates to assess the validity of the following: 1) remission samples can be used as control, 2) concordance between standard clinical laboratory analysis and RNA-seq data, and 3) implementation of existing microarray data repository to infer expected mutational status of the sequenced samples based on expression patterns. Methods Diagnostic samples were selected among patients with high leukemic blast fraction (mean of 75%) and paired remission samples with very low, or no detectable, molecular minimal residual disease. A panel of recurrent somatic mutations was assessed by means of quantitative PCR (qPCR) and fragment analysis for sequencing comparisons. Sequencing was performed on single HiSeq lane aimed at minimum 66 million reads per sample (AROS Applied Biotechnology, Aarhus, Denmark). Biomedical Genomics Workbench 2 was employed for alignment, mutation calling and analysis of differential expression (Robinson-Smyth exact test, Bonferroni corrected). R and Mathematica were used for comparison of expression patterns from the individual samples in conjunction with CN-AML (251) and control bone marrow (73) data from microarray repositories (Gene Expression Omnibus, GSE15434 and GSE13159). Results 259 genes were differentially expressed as defined by the following thresholds: normalized fold-change > 2, expression range values > 10 RPKM and p<0.05. Of these, 41 genes were upregulated in AML samples (p<0.01 subset heatmap is shown in fig. 1A). Supervised clustering of the samples on the basis of differential expression patterns efficiently divided the data into 2 groups according to diagnosis and remission status (fig. 1A, dendrogram). A median of 61 mutations per sample was observed (35 to 675). Thirty-four mutations occurred twice or more (fig. 1B, size reflects transcript fraction of mutated allele). A close correlation between routine molecular diagnostics and sequencing data was found. As expected, routine minimal residual disease marker WT1 was in agreement and found to be clearly expressed at diagnosis, but not at time of remission. By comparing patient expression patterns with NPM1, FLT3 or CEPBA mutation specific microarray expression signatures we were largely able to deduce expected mutational status for each patient (fig. 1C, showing the individual matching fraction of mutation specific gene expression signature in terms of upregulated or downregulated) in favor of qPCR analysis shown in table 1. Table 1. Comparison of mutational status from qPCR/RNA-seq FLT3 mut NPM1 mut IDH1 mut WT1 mut CEBPA mut KIT mut #1 +/+ +/+ +/+ -/- -/- -/- #2 +/+ +/+ -/- -/- -/- -/- #3 +/+ +/- -/- -/- -/- -/- #4 -/- +/- +/+ +/- -/- -/- #5 +/+ -/- -/- -/- -/- -/- Conclusions This approach serves as a proof of the concept that RNA-sequencing can be directly implemented in the routine laboratory. Moreover, transcriptome data such as these can extend the molecular survey in a dynamic manner by aiding in therapy-related decision-making for the application of targeted therapy and for delineating the reasons for treatment. While publicly available repositories of RNA-seq data are being generated for referencing, it is possible to include microarray data to support molecular classification of the individual patients, as is shown here. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document