scholarly journals Low Soil Nutrient Tolerance and Mineral Fertilizer Response in White Guinea Yam (Dioscorea rotundata) Genotypes

2021 ◽  
Vol 12 ◽  
Author(s):  
Ryo Matsumoto ◽  
Haruki Ishikawa ◽  
Asrat Asfaw ◽  
Robert Asiedu

Yam (Dioscorea spp.) is a major food security crop for millions of resource-poor farmers, particularly in West Africa. Soil mineral deficiency is the main challenge in yam production, especially with the dwindling of fallow lands for the indigenous nutrient supply. Cultivars tolerant to available low soil nutrients and responsive to added nutrient supply are viable components of an integrated soil fertility management strategy for sustainable and productive yam farming systems in West Africa. This study’s objective was to identify white Guinea yam (D. rotundata) genotypes adapted to available low soil nutrients and responsive to externally added nutrient supply. Twenty advanced breeding lines and a local variety (Amula) were evaluated under contrasting soil fertility, low to expose the crop to available low soil nutrient supply and high to assess the crop response to added mineral fertilizer (NPK) input at Ibadan, Nigeria. The genotypes expressed differential yield response to low soil fertility (LF) stress and added fertilizer input. Soil fertility susceptibility index (SFSI) ranged from 0.64 to 1.34 for tuber yield and 0.60 to 1.30 for shoot dry weight. The genotypes R034, R041, R050, R052, R060, R100, and R125 combined lower SFSI with a low rate of reduction in tuber yield were identified as tolerant to LF stress related to the soil mineral deficiency. Likewise, the genotypes R109, R119, and R131 showed high susceptibility to soil fertility level and/or fertilizer response. Genotypes R025 and R034 had the tuber yielding potential twice of that the local variety under low soil nutrient conditions. Shoot dry weight and tuber yield showed a positive correlation both under low and high soil fertility conditions (r = 0.69 and 0.75, respectively), indicating the vigor biomass may be a morphological marker for selecting genotypes of white Guinea yam for higher tuber yield. Our results highlight genotypic variation in the tolerance to low soil nutrients and mineral fertilizer response in white Guinea yam to exploit through breeding and genetic studies to develop improved genotypes for low and high input production systems in West Africa.

2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


1988 ◽  
Vol 64 (1) ◽  
pp. 40-46 ◽  
Author(s):  
V. R. Timmer ◽  
P. N. Ray

Fertilization screening trials testing a standard NPK application were conducted in 29 mature black spruce stands growing on diverse Claybelt sites. The objective was to evaluate several methods of predicting soil nutrient regime, and validate a nutrient-related ordination axis of the regional Forest Ecosystem Classification (FEC) system. Diagnosis by vector analysis of current needle responses in dry weight and macronutrient concentration and content suggested that of all nutrients added N was most limiting for black spruce growth. Potential fertilizer response was measured by the change in unit needle N uptake (content) occurring in the first season after treatment. Significant increases (as high as 63% over the control) were detected in about half the trials suggesting that the stands were established on sites varying in soil fertility. Foliar N response was subsequently correlated against more rapid predictors of site productivity such as stand growth parameters site index, stem analysis, and chemical analysis of unfertilized soil and foliage. Of these only measures of fall-sampled, current needle N content correlated adequately (r = −0.72) with potential fertilizer response. This response factor was also significantly correlated (r = 0.71) with the coordinate values of the FEC-ordination diagram indicative of site nutrient regime, supporting evidence that the axis reflects a continuum of soil N availability. Key words: Nitrogen, foliar analysis, response prediction, site evaluation, forest fertilization, Picea mariana


2019 ◽  
Author(s):  
Matema L.E. Imakumbili ◽  
Ernest Semu ◽  
Johnson M.R. Semoka ◽  
Adebayo Abass ◽  
Geoffrey Mkamilo

AbstractVarieties and soil moisture content are the two agronomic factors mostly pointed out as influencers of cyanogenic glucoside production in cassava. The role of soil nutrient supply is however often overlooked or minimised, despite its known influence on cyanogenic glucoside production. A pot experiment was hence carried out to determine whether soil nutrient supply had an equal influence on cyanogenic glucoside production in cassava, as varieties and soil moisture content. The cassava varieties, Kiroba (a sweet cassava variety) and Salanga (a bitter cassava variety), were used in the experiment, together with three soil moisture treatments that respectively induced severe moisture stress, moderate moisture stress and no moisture stress (optimal soil moisture conditions where plants were kept well-watered). The soil nutrient treatments used depicted conditions of low (no fertiliser), moderate (25 N mg, 5 P mg, 25 K mg /kg) and high (25 N mg, 5 P mg, 25 K mg /kg) nutrient supply. A sole K treatment was also included (25 K mg/kg). Total hydrogen cyanide (HCN) levels in cassava leaves were used to indicate the effects of the three factors on cyanogenic glucoside production. The results of the study showed that nutrient supply had a significantly (p < 0.001) equal influence on cyanogenic glucoside production, as varieties (p < 0.001) and soil moisture content (p < 0.001). Cyanogenic glucoside production was however found to be differently influenced by soil moisture content (M) and nutrient supply (N) in both Salanga (M×N, p = 0.002) and Kiroba (M×N, p < 0.001). Leaf HCN levels of unfertilised Salanga and Kiroba were respectively increased by 1.8 times and 2.7 times their levels under optimal soil moisture conditions. Thus, under severe moisture stress, low soil fertility was found to have an increasing effect on leaf HCN levels in both varieties. A high supply of N, P and K, however also had an increasing effect on leaf HCN in both varieties regardless of soil moisture conditions. Leaf HCN levels in Salanga ranged from 95.5 mg/kg to 334.5 mg/kg and in Kiroba they ranged from 39.3 mg/kg to 161.5 mg/kg, on a fresh weight basis. The study managed to demonstrate that soil fertility had an equally important influence on cyanogenic glucoside production, just like varieties and soil moisture content. The study also showed that the effects of nutrient supply on cyanogenic glucoside production in various cassava varieties is dependent on changes in soil moisture content and vice versa.


2012 ◽  
Vol 4 (2) ◽  
pp. 172-177 ◽  
Author(s):  
K. E. Law-Ogbomo ◽  
A. U. Osaigbovo ◽  
I. Ekwueme

Studies were conducted as an on-farm trial at Evboneka in 2009 and 2010 cropping seasons to estimate the effect of soil amendments in enhancing soil fertility status and relative agronomic efficacy of maize yield in humid ultisol environment. Effects of compost was investigated at application rates of 20 and 40 t ha-1 while NPK and organo-mineral fertilizer effects were investigated at 200 kg/ha and a combination of 100 kg/ha NPK and 20 t/ha compost manure (organo-mineral fertilizer) with maize TZEE-W cultivar resulting in five treatments and replicated three times. The results obtained revealed that the tested soil was low in organic matter, total N, available P, moderately acidic and low cations (Ca, Mg and K). The compost manure was rich in N, P, Mg, K, organic carbon and Ca concentration. The application of compost manure and NPK to the soil improved the soil fertility status. The highest maize height (132.70 cm), greatest total dry weight (0.63 t ha-1) and relative agronomic efficacy (%) were obtained from plots treated with 40 t/ha-1 compost manure while the plots treated with organo-mineral had the greatest LAI (2.75).


2019 ◽  
Vol 8 (4) ◽  
pp. 9382-9387

Digitization of agriculture has tremendously increased in the adoption of various advanced techniques in the Indian agricultural sector. One of the core agriculture objectives is preserving soil fertility. To achieve this efficient soil fertility management alongside an effective spatial distribution of soil nutrient properties is required. The main objective of this study is to evaluate and propose the best interpolation technique on estimating the soil nutrients status to provide site-specific fertilizer recommendations through the Soil Test Crop Response target yield approach. In this study, we have focused on three major soil nutrients viz., nitrogen (N), phosphorus (P2O5) and potassium (K2O) for evaluation. The benchmarking study has considered four most successive interpolation techniques like Ordinary Kriging (OK), Radial Basis Function (RBF), Inverse Distance Weighted (IDW), and Global Polynomial Function (GPI). The evaluation and analytical results proved Ordinary Kriging is better by securing the highest accuracy against other interpolation techniques concerning RMSE and ME for interpreting the soil nutrients N, P2O5, and K2O. The interpreted values are also cross-validated with actual soil test samples with an accuracy of more than 85% for each nutrient. Nevertheless, these results are dependent on the number of actual soil test samples and the accuracy of the designed network with overall accuracy between the interpreted and the actual data.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dora Neina

Yam is an important food and cash crop in West Africa (the yam belt) whose production is traditionally nonsedentary due to its substantial nutrient demand. Population growth, urbanization, and existing soil degradation have made nonsedentary farming virtually impossible. Despite the numerous research invested in yam production within and outside the yam belt, some gaps remain to be filled owing to changing climate events and global developments. Alarmingly, the yam belt is facing sharp yield declines despite increasing production areas. The key edaphic and ecological drivers of yam production in the global yam belt were reviewed. The implications for yam production were discussed along with prospects for future research, sustainable production, and soil management. The main findings are that (1) agroecological zone, postplanting cultural practices, and climate change and variability ecological drivers, while (2) tillage, soil type, texture, and fertility were the edaphic factors. The most critical among the drivers, principally, soil fertility, entails the biological and chemical through which nutrients are released lude, and physical soil fertility which enhances low bulk density, porosity, and water retention for free yam tuber expansion. Soil fertility was the most cited driver, which explains why yam is often the first crop in the cropland cultivation cycle in the yam belt. Data show that yam yields decline with time under native fertility and mineral fertilizer application due to the voracious nutrient extraction by tubers. Conversely, yields increase chronologically under organic fertilizer application due to the additive effects of the latter on soil properties. Thus, a yam fertilizer program to develop specific yam fertilizer formulations and the adoption of the Terra Preta Model are proposed to sustain future yam production.


Author(s):  
V. T. Sinegovskaya ◽  
E. T. Naumchenko

The article presents the results of comparative evaluation of the efficiency of the long-term application of mineral and organic fertilizers in the crop rotation system. It was found that the application of the mineral fertilizer system increased the value of hydrolytic acidity of the soil from 4,30 to 5,29 mg-eq per 100 g of soil, the indicator of metabolic acidity decreased from 5,2 to 4,9 pH units. By the end of the 11th rotation for both fertilizer systems, the content of mobile phosphorus increased by more than 4 times relative to the initial value, its mobility indicator – by 2,2-3,2 times compared with the control. The use of the organo-mineral system was accompanied by an increase in the content of humus by 0,35 % and a decrease in the C:N ratio from 11,2 to 8,9. The increased productivity of wheat was revealed when applying nitrogen and nitrogen-phosphorus fertilizers against the background of prolonged use of the mineral and organo-mineral fertilizer system. The change in wheat productivity by 56 % depended on the content of mineral nitrogen, mobile phosphorus, humus in the topsoil, and on the phosphate ion mobility. Soybean productivity depended on soil fertility indicators only by 24 %: the relationship between soybean productivity and the mineral forms of nitrogen and phosphorus is weak and direct, between productivity and P2O5 mobility - weak and inverse, with humus - moderate and direct.


2016 ◽  
Vol 1 (90) ◽  
pp. 92-97
Author(s):  
I.T. Slusar ◽  
V.A. Serbenyuk ◽  
A.N. Gera ◽  
A.P. Solyanik ◽  
A.A. Tarasenko

Research on the impact of the introduction of micro fertilizers and growth promoters on a background of mineral fertilizer and without N90R45К120 spent on old peat in shallow carbonate floodplain r.Supiy, Yahotyn Kyiv region. Power peat horizon about 60-70 cm, 7,4-7,6 pH of the aqueous extract, stupas schedule 56-60%, density 0,49-0,52 assembly soil, total nitrogen content (%) - 1.9; gross forms of phosphorus - 0,4, potassium 0.2, 20% lime. In experiments studying biological rehoplant, radustym, Biolan, emistim, Jets, humisol, plantafol, radyfarm and micronutrients: copper, boric acid, manganese sulphate, zinc sulphate, potassium humates. Treatment drugs conducted in the spring by spraying mixtures. Space research area of 60 m2, three-time repetition. It is established that the use of growth stimulants and micronutrients in the background N90R45К120 provided the highest yield mixtures of years, against making BIOLan - 9.9 t / ha Radyfarmu - 9.6 t / ha Radostymu 9.3 t / ha dry weight. In areas for making other preparations were intermediate yield growth rates - 0.5 - 2.0 t / ha dry weight. Also good gains herbage yields obtained by making all kinds of micronutrients and growth stimulants in the background without making makrodobryv which was within 5.3 - 6.9 t / ha to control without fertilization - 4.5 t / ha dry weight. In deep peat copper fertilizer (25 kg / ha of copper sulphate or 5 kg / ha pirytnoho cinders) in all zones should be making every 3-4 years, and zinc, cobalt and molybdenum advisable to make time for the growing season, spring, by foliar application in such numbers: ammonium molibdenovokyslyy - 0.3 kg / ha; cobalt sulfate - 3 kg / ha zinc sulphate 0.5 kg / ha or placers these salts should be mixed with major fertilizer.


Sign in / Sign up

Export Citation Format

Share Document