scholarly journals Salicylic Acid Is Involved in Rootstock–Scion Communication in Improving the Chilling Tolerance of Grafted Cucumber

2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Fu ◽  
Yi-Qing Feng ◽  
Xiao-Wei Zhang ◽  
Yan-Yan Zhang ◽  
Huan-Gai Bi ◽  
...  

Salicylic acid (SA) has been proven to be a multifunctional signaling molecule that participates in the response of plants to abiotic stresses. In this study, we used cold-sensitive cucumber and cold-tolerant pumpkin as experimental materials to examine the roles of SA in root–shoot communication responses to aerial or/and root-zone chilling stress in own-root and hetero-root grafted cucumber and pumpkin plants. The results showed that pumpkin (Cm) rootstock enhanced the chilling tolerance of grafted cucumber, as evidenced by the observed lower levels of electrolyte leakage (EL), malondialdehyde (MDA), and higher photosynthetic rate (Pn) and gene expression of Rubisco activase (RCA). However, cucumber (Cs) rootstock decreased the chilling tolerance of grafted pumpkins. Cs/Cm plants showed an increase in the mRNA expression of C-repeat-binding factor (CBF1), an inducer of CBF expression (ICE1), and cold-responsive (COR47) genes and CBF1 protein levels in leaves under 5/25 and 5/5°C stresses, or in roots under 25/5 and 5/5°C stresses, respectively, compared with the Cs/Cs. Chilling stress increased the endogenous SA content and the activity of phenylalanine ammonia-lyase (PAL), and the increase in SA content and activity of PAL in Cs/Cm plants was much higher than in Cs/Cs plants. Transcription profiling analysis revealed the key genes of SA biosynthesis, PAL, ICS, and SABP2 were upregulated, while SAMT, the key gene of SA degradation, was downregulated in Cs/Cm leaves, compared with Cs/Cs leaves under chilling stress. The accumulation of SA in the Cs/Cm leaves was mainly attributed to an increase in SA biosynthesis in leaves and that in transport from roots under aerial and root-zone chilling stress, respectively. In addition, exogenous SA significantly upregulated the expression level of cold-responsive (COR) genes, enhanced actual photochemical efficiency (ΦPSII), maximum photochemical efficiency (Fv/Fm), and Pn, while decreased EL, MDA, and CI in grafted cucumber. These results suggest that SA is involved in rootstock–scion communication and grafting-induced chilling tolerance by upregulating the expression of COR genes in cucumber plants under chilling stress.

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1341
Author(s):  
Qian Zhang ◽  
Dongmei Li ◽  
Qi Wang ◽  
Xiangyu Song ◽  
Yingbo Wang ◽  
...  

Maize (Zea mays L.) is a chilling-sensitive plant. Chilling stress in the early seedling stage seriously limits the growth, development, productivity and geographic distribution of maize. Salicylic acid (SA) is a plant growth regulator involved in the defenses against abiotic and biotic stresses as well as in plant development. However, the physiological mechanisms underlying the effects of foliar applied SA on different maize inbred lines under chilling stress are unclear. Two inbred lines, cold-sensitive cv. C546 and cold-tolerant cv. B125, were used to study the effects of SA on the growth and physiology of maize seedlings. The results showed that the application of SA at 50 mg/L on the leaves of maize seedlings under 4 °C decreased the relative electrolyte conductivity (REC) and the malondialdehyde (MDA) and reactive oxygen species (ROS) (H2O2 and O2−) content due to increased superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activity; SA also improved photosynthesis in the seedlings through increased chlorophyll content, enhanced Pn and Gs, and decreased Ci. SA application also increased the proline content and the relative water content (RWC) in the maize seedlings, thereby improving their osmotic adjustment capacity. The increase rate caused by SA of plant height and dry weight in C546 were 10.5% and 5.4% higher than that in B125 under 4 °C. In conclusion, SA promotes maize seedling growth and physiological characteristics, thus enhancing chilling resistance and the effect of SA on the chilling resistance of cold-sensitive cv. was stronger than that on cold-tolerant cv. at the low temperature.


Botany ◽  
2012 ◽  
Vol 90 (9) ◽  
pp. 845-855 ◽  
Author(s):  
Yang Wang ◽  
Jin Hu ◽  
Guochen Qin ◽  
Huawei Cui ◽  
Qitian Wang

One kind of biologically active salicylic acid (SA) analogue (acetylsalicylic acid, ASA) and two inactive compounds (4-aminosalicylic acid and 4-aminobenzoic acid), along with SA were chosen to evaluate their role in inducing chilling tolerance of two different chilling-tolerant maize ( Zea mays L.) inbred lines. These compounds were applied as seed treatments or as a hydroponic application. The results showed that four compounds had no significant effect on germination of maize seeds; however, SA or ASA soaking treatments significantly increased the root length, shoot height, and shoot and root dry weights of seedlings grown under chilling stress. Hydroponic applications of SA or ASA significantly alleviated the accumulation of malondialdehyde, hydrogen peroxide, and superoxide radicals in roots and leaves of both lines under chilling stress, and the applications also increased the photosynthetic pigments, including chlorophyll a, chlorophyll b, and carotenoids. However, 4-aminosalicylic acid and 4-aminobenzoic acid applications had no significant effect in ameliorating the growth inhibition of seedlings under chilling stress. This study showed that SA and ASA significantly induced the chilling tolerance of maize; however, 4-aminosalicylic acid and 4-aminobenzoic acid were not effective in inducing tolerance to chilling stress. The results suggest that only SA analogues with biological activity may have the ability to induce chilling tolerance of maize.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2024
Author(s):  
Fei Cheng ◽  
Min Gao ◽  
Junyang Lu ◽  
Yuan Huang ◽  
Zhilong Bie

Grafting with pumpkin rootstock could improve chilling tolerance in watermelon, and salicylic acid (SA) as a signal molecule is involved in regulating plant tolerance to chilling and other abiotic stresses. To clarify the mechanism in pumpkin rootstock-induced systemic acquired acclimation in grafted watermelon under chilling stress, we used self-grafted (Cl/Cl) and pumpkin rootstock-grafted (Cl/Cm) watermelon seedlings to study the changes in lipid peroxidation, photosystem II (PSII) activity and antioxidant metabolism, the spatio–temporal response of SA biosynthesis and H2O2 accumulation to chilling, and the role of H2O2 signal in SA-induced chilling tolerance in grafted watermelon. The results showed that pumpkin rootstock grafting promoted SA biosynthesis in the watermelon scions. Chilling induced hydrolysis of conjugated SA into free SA in the roots and accumulation of free SA in the leaves in Cl/Cm plants. Further, pumpkin rootstock grafting induced early response of antioxidant enzyme system in the roots and increased activities of ascorbate peroxidase and glutathione reductase in the leaves, thus maintaining cellular redox homeostasis. Exogenous SA improved while the inhibition of SA biosynthesis reduced chilling tolerance in Cl/Cl seedlings. The application of diphenyleneiodonium (DPI, inhibitor of NADPH oxidase) and dimethylthiourea (DMTU, H2O2 scavenger) decreased, while exogenous H2O2 improved the PSII activity in Cl/Cl plants under chilling stress. Additionally, the decrease of the net photosynthetic rate in DMTU- and DPI-pretreated Cl/Cl plants under chilling conditions could be alleviated by subsequent application of H2O2 but not SA. In conclusion, pumpkin rootstock grafting induces SA biosynthesis and redistribution in the leaves and roots and participates in the regulation of antioxidant metabolism probably through interaction with the H2O2 signal, thus improving chilling tolerance in watermelon.


2018 ◽  
Vol 143 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Lijian Liang ◽  
Yanming Deng ◽  
Xiaobo Sun ◽  
Xinping Jia ◽  
Jiale Su

Nitric oxide (NO) is well known for its multifaceted physiological roles as a signaling molecule in plants. Previous studies have indicated that exogenous application of NO may be useful for alleviating chilling injury (CI) in fruits and vegetables. However, the potential role and mechanism of NO in mitigating chilling stress in anthurium (Anthurium andraeanum) remain unclear. In this study, physiological and biochemical analysis were performed to investigate the effects of exogenous NO in alleviating CI in anthurium. Anthurium seedling plants were treated with the NO donor sodium nitroprusside (SNP) at four concentrations (0, 0.2, 0.4, and 0.8 mm) and stored at 12/5 °C (day/night) for 15 day. The results showed that exogenous SNP mitigated the adverse effects of chilling on anthurium, and the most effective concentration was 0.2 mm. In addition, NO effectively improved the CI index, malondialdehyde (MDA) content, electrolyte leakage, photochemical efficiency (Fv/Fm), and chlorophyll loss of anthurium during low temperatures. Pretreatment with SNP also increased the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX); the content of antioxidants including glutathione (GSH), ascorbic acid (AsA), and phenolics; and reduced the accumulation of hydrogen peroxide and O2−. SNP pretreatment at 0.2 mm also significantly promoted the accumulation of proline, increased the activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS), and reduced the activity of proline dehydrogenase (PDH), when compared with control (0 mm SNP→Chilling) under chilling stress. These results indicated that NO could enhance the chilling tolerance of anthurium by elicitation of an antioxidant response and proline accumulation for maintaining cell membrane integrity.


2020 ◽  
Vol 21 (6) ◽  
pp. 1942 ◽  
Author(s):  
Magda Pál ◽  
Tibor Janda ◽  
Imre Majláth ◽  
Gabriella Szalai

The exposure of plants to non-lethal low temperatures may increase their tolerance to a subsequent severe chilling stress. To some extent, this is also true for cold-sensitive species, including maize. In the present work, based on our previous microarray experiment, the differentially expressed genes with phenylpropanoid pathways in the focus were further investigated in relation to changes in certain phenolic compounds and other plant growth regulators. Phenylalanine ammonia lyase (PAL) was mainly activated under limited light conditions. However, light-induced anthocyanin accumulation occurred both in the leaves and roots. Chilling stress induced the accumulation of salicylic acid (SA), but this accumulation was moderated in the cold-acclimated plants. Acclimation also reduced the accumulation of jasmonic acid (JA) in the leaves, which was rather induced in the roots. The level of abscisic acid (ABA) is mainly related to the level of the stress, and less indicated the level of the acclimation. The highest glutathione (GSH) amount was observed during the recovery period in the leaves of plants that were cold acclimated at growth light, while their precursors started to accumulate GSH even during the chilling. In conclusion, different light conditions during the cold acclimation period differentially affected certain stress-related mechanisms in young maize plants and changes were also light-dependent in the root, not only in the leaves.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rong Zeng ◽  
Zhuoyang Li ◽  
Yiting Shi ◽  
Diyi Fu ◽  
Pan Yin ◽  
...  

AbstractMaize (Zea mays L.) is a cold-sensitive species that often faces chilling stress, which adversely affects growth and reproduction. However, the genetic basis of low-temperature adaptation in maize remains unclear. Here, we demonstrate that natural variation in the type-A Response Regulator 1 (ZmRR1) gene leads to differences in chilling tolerance among maize inbred lines. Association analysis reveals that InDel-35 of ZmRR1, encoding a protein harboring a mitogen-activated protein kinase (MPK) phosphorylation residue, is strongly associated with chilling tolerance. ZmMPK8, a negative regulator of chilling tolerance, interacts with and phosphorylates ZmRR1 at Ser15. The deletion of a 45-bp region of ZmRR1 harboring Ser15 inhibits its degradation via the 26 S proteasome pathway by preventing its phosphorylation by ZmMPK8. Transcriptome analysis indicates that ZmRR1 positively regulates the expression of ZmDREB1 and Cellulose synthase (CesA) genes to enhance chilling tolerance. Our findings thus provide a potential genetic resource for improving chilling tolerance in maize.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaowei Zhang ◽  
Yiqing Feng ◽  
Tongtong Jing ◽  
Xutao Liu ◽  
Xizhen Ai ◽  
...  

Chilling adversely affects the photosynthesis of thermophilic plants, which further leads to a decline in growth and yield. The role of melatonin (MT) in the stress response of plants has been investigated, while the mechanisms by which MT regulates the chilling tolerance of chilling-sensitive cucumber remain unclear. This study demonstrated that MT positively regulated the chilling tolerance of cucumber seedlings and that 1.0 μmol⋅L–1 was the optimum concentration, of which the chilling injury index, electrolyte leakage (EL), and malondialdehyde (MDA) were the lowest, while growth was the highest among all treatments. MT triggered the activity and expression of antioxidant enzymes, which in turn decreased hydrogen peroxide (H2O2) and superoxide anion (O2⋅–) accumulation caused by chilling stress. Meanwhile, MT attenuated the chilling-induced decrease, in the net photosynthetic rate (Pn) and promoted photoprotection for both photosystem II (PSII) and photosystem I (PSI), regarding the higher maximum quantum efficiency of PSII (Fv/Fm), actual photochemical efficiency (ΦPSII), the content of active P700 (ΔI/I0), and photosynthetic electron transport. The proteome analysis and western blot data revealed that MT upregulated the protein levels of PSI reaction center subunits (PsaD, PsaE, PsaF, PsaH, and PsaN), PSII-associated protein PsbA (D1), and ribulose-1,5-bisphosphate carboxylase or oxygenase large subunit (RBCL) and Rubisco activase (RCA). These results suggest that MT enhances the chilling tolerance of cucumber through the activation of antioxidant enzymes and the induction of key PSI-, PSII-related and carbon assimilation genes, which finally alleviates damage to the photosynthetic apparatus and decreases oxidative damage to cucumber seedlings under chilling stress.


2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Xiangli Sun ◽  
Zebin Yuan ◽  
Bo Wang ◽  
Liping Zheng ◽  
Jianzhong Tan ◽  
...  

Abstract Background Chilling stress is the major factor limiting plant productivity and quality in most regions of the world. In the present study, we aimed to evaluate the effects of putrescine (Put) and polyamine inhibitor d-arginine (d-arg) on the chilling tolerance of anthurium (Anthurium andraeanum). Results Anthurium seedlings were pretreated with five different concentrations of Put solution or d-arg solution. Subsequently, the seedlings were subjected to chilling stress at 6 °C for 3 days, followed by a recovery at 25 °C for 1 day. Relative permeability of the plasma membrane, as well as physiological and morphologic parameters was assessed during the experiments. Additionally, transcriptome sequencing and patterns of differential gene expression related to chilling response were analyzed by qRT-PCR in 1.0 mM Put-treated and untreated anthurium seedlings. Results indicated that the supplementation of exogenous Put decreased the extent of membrane lipid peroxidation and the accumulation of malondialdehyde (MDA), promoted the antioxidant activities and proline content and maintained the morphologic performances compared with the control group. This finding indicated that the application of exogenous Put could effectively decrease the injury and maintain the quality of anthurium under chilling conditions. In contrast, the treatment of d-arg exhibited the opposite effects, which confirmed the effects of Put. Conclusions This research provided a possible approach to enhance the chilling tolerance of anthurium and reduce the energy consumption used in anthurium production.


2016 ◽  
Vol 96 (5) ◽  
pp. 796-807
Author(s):  
Yi-ping Chen ◽  
Qiang Liu ◽  
Dong Chen

To investigate the mechanism by which laser irradiation enhances the chilling tolerance of wheat seedlings, seeds were exposed to different treatments, and biochemical parameters were measured. Compared with the control group, chilling stress (CS) led to an increase in the concentrations of malondialdehyde (MDA) and H2O2, and decreases in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT), peroxidase (POD), and nitric oxide synthase (NOS), and the concentrations of nitric oxide (NO) and protein. Treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), sodium tungstate (ST), and NG-nitro-L-arginine methyl ester (L-NAME) followed by CS resulted in further increases in the concentrations of MDA and H2O2 and further decreases in the other parameters. However, treatment with PTIO, ST, and L-NAME followed by laser irradiation had the opposite effects on these parameters. When the seeds were treated with PTIO, ST, and L-NAME followed by laser and CS, the concentrations of MDA and H2O2 were significantly lower and the other parameters were higher than in the PTIO, ST, and L-NAME plus CS groups. These results suggest that CO2 laser irradiation enhances the chilling tolerance of wheat seedlings by stimulating endogenous NO synthesis.


Sign in / Sign up

Export Citation Format

Share Document