scholarly journals Petal Cellular Identities

2021 ◽  
Vol 12 ◽  
Author(s):  
Quentin Cavallini-Speisser ◽  
Patrice Morel ◽  
Marie Monniaux

Petals are typified by their conical epidermal cells that play a predominant role for the attraction and interaction with pollinators. However, cell identities in the petal can be very diverse, with different cell types in subdomains of the petal, in different cell layers, and depending on their adaxial-abaxial or proximo-distal position in the petal. In this mini-review, we give an overview of the main cell types that can be found in the petal and describe some of their functions. We review what is known about the genetic basis for the establishment of these cellular identities and their possible relation with petal identity and polarity specifiers expressed earlier during petal development, in an attempt to bridge the gap between organ identity and cell identity in the petal.

Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3433-3441 ◽  
Author(s):  
M.C. Perbal ◽  
G. Haughn ◽  
H. Saedler ◽  
Z. Schwarz-Sommer

In Antirrhinum majus, petal and stamen organ identity is controlled by two MADS-box transcription factors, DEFICIENS and GLOBOSA. Mutations in either of these genes result in the replacement of petals by sepaloid organs and stamens by carpelloid organs. Somatically stable def and glo periclinal chimeras, generated by transposon excision events, were used to study the non-cell-autonomous functions of these two MADS-box proteins. Two morphologically distinct types of chimeras were analysed using genetic, morphological and molecular techniques. Restoration of DEF expression in the L1 cell layer results in the reestablishment of DEF and GLO functions in L1-derived cells only; inner layer cells retain their mutant sepaloid features. Nevertheless, this activity is sufficient to allow the expansion of petal lobes, highlighting the role of DEF in the stimulation of cell proliferation and/or cell shape and elongation when expressed in the L1 layer. Establishment of DEF or GLO expression in L2 and L3 cell layers is accompanied by the recovery of petaloid identity of the epidermal cells but it is insufficient to allow petal lobe expansion. We show by in situ immunolocalisation that the non-cell-autonomy is due to direct trafficking of DEF and GLO proteins from the inner layer to the epidermal cells. At least for DEF, this movement appears to be polar since DEF acts cell-autonomously when expressed in the L1 cell layer. Furthermore, the petaloid revertant sectors observed on second whorl mutant organs and the mutant margins of petals of L2L3 chimeras suggest that DEF and GLO intradermal movement is limited. This restriction may reflect the difference in the regulation of primary plasmodesmata connecting cells from the same layer and secondary plasmodesmata connecting cells from different layers. We propose that control of intradermal trafficking of DEF and GLO could play a role in maintaining of the boundaries of their expression domains.


Development ◽  
1997 ◽  
Vol 124 (11) ◽  
pp. 2143-2154 ◽  
Author(s):  
G. Struhl ◽  
D.A. Barbash ◽  
P.A. Lawrence

The abdomen of adult Drosophila, like that of other insects, is formed by a continuous epithelium spanning several segments. Each segment is subdivided into an anterior (A) and posterior (P) compartment, distinguished by activity of the selector gene engrailed (en) in P but not A compartment cells. Here we provide evidence that Hedgehog (Hh), a protein secreted by P compartment cells, spreads into each A compartment across the anterior and the posterior boundaries to form opposing concentration gradients that organize cell pattern and polarity. We find that anteriorly and posteriorly situated cells within the A compartment respond in distinct ways to Hh: they express different combinations of genes and form different cell types. They also form polarised structures that, in the anterior part, point down the Hh gradient and, in the posterior part, point up the gradient - therefore all structures point posteriorly. Finally, we show that ectopic Hh can induce cells in the middle of each A compartment to activate en. Where this happens, A compartment cells are transformed into an ectopic P compartment and reorganise pattern and polarity both within and around the transformed tissue. Many of these results are unexpected and lead us to reassess the role of gradients and compartments in patterning insect segments.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Tiago Nunes ◽  
Claudio Bernardazzi ◽  
Heitor S. de Souza

Interleukin- (IL-) 33 is a widely expressed cytokine present in different cell types, such as epithelial, mesenchymal, and inflammatory cells, supporting a predominant role in innate immunity. IL-33 can function as a proinflammatory cytokine inducing Th2 type of immune response being involved with the defense against parasitic infections of the gastrointestinal tract. In addition, it has been proposed that IL-33 can act as a signaling molecule alerting the immune system of danger or tissue damage. Recently, in the intestinal mucosa, overexpression of IL-33 has been reported in samples from patients with inflammatory bowel diseases (IBD). This review highlights the available data regarding IL-33 in human IBD and discusses emerging roles for IL-33 as a key modulator of intestinal inflammation.


2001 ◽  
Vol 281 (4) ◽  
pp. R1169-R1176 ◽  
Author(s):  
Irena Lavelin ◽  
Noam Meiri ◽  
Olga Genina ◽  
Rosaly Alexiev ◽  
Mark Pines

The avian eggshell gland (ESG) is a tissue specialized in transporting the Ca2+ required for eggshell formation and represents a unique biological system in which the calcification process takes place in a circadian fashion. With the use of RNA fingerprinting, a set of genes differentially induced at the time of calcification was detected, one of which was identified as the α1-subunit of Na+-K+-ATPase. The gene was expressed in a circadian manner in both cell types populating the ESG, but in different temporal patterns, suggesting distinct mechanisms of regulation. Ca2+ flux and mechanical strain were found to regulate gene expression in the inner glandular epithelium and the pseudostratified epithelium facing the lumen, respectively. Mechanical strain also affected gene expression in cell layers facing the lumen in other parts of the oviduct. Only the α1-isoform, not the α2- or α3-isoform, of Na+-K+-ATPase was expressed in the ESG. In summary, we demonstrate that the α1-subunit Na+-K+-ATPase gene is expressed in different epithelial cell types in the ESG and is regulated by various mechanisms, which may reflect the disparity in the physiological roles of the cells in the process of eggshell formation.


1975 ◽  
Vol 64 (1) ◽  
pp. 135-145 ◽  
Author(s):  
L Weiss ◽  
G Poste ◽  
A MacKearnin ◽  
K Willett

Mammalian and avian cells cultured on glass or plastic substrates produce microexudates of cellular macromolecules which remain bound to the substrate when the cells are detached. The gross macromolecular composition of microexudates from a range of diploid, heteroploid, and virus-transformed cells was determined with cells labeled with radioisotopes. Significant differences in the amounts of cellular glycoproteins, proteins, and RNA present in microexudates were found between different cell types and between cells of the same type at different stages of growth. Inoculation of cells onto substrates "coated" with microexudates altered their growth behavior. Microexudates from exponentially growing subconfluent homotypic and heterotypic cell populations enhanced the growth of mouse and chick embryo cells seeded at very low densities, but similar microexudates had no effect on the proliferation of cells seeded at higher densities. The enhanced growth of low-density cell populations seeded on microexudates was compared with the growth enhancement produced by feeder cell layers and conditioned medium.


2005 ◽  
Vol 25 (8) ◽  
pp. 3140-3150 ◽  
Author(s):  
Takashi Adachi-Yamada ◽  
Toshiyuki Harumoto ◽  
Kayoko Sakurai ◽  
Ryu Ueda ◽  
Kaoru Saigo ◽  
...  

ABSTRACT Growth, patterning, and apoptosis are mutually interactive during development. For example, cells that select an abnormal fate in a developing field are frequently removed by apoptosis. An important issue in this process that needs to be resolved is the mechanism used by cells to discern their correct fate from an abnormal fate. In order to examine this issue, we developed an animal model that expresses the dioxin receptor homolog Spineless (Ss) ectopically in the Drosophila wing. The presence of mosaic clones ectopically expressing ss results in a local transformation of organ identity, homeosis, from wing into a leg or antenna. The cells with misspecified fates subsequently activate c-Jun N-terminal kinase to undergo apoptosis in an autonomous or nonautonomous manner depending on their position within the wing, suggesting that a cell-cell interaction is, at least in some cases, involved in the detection of misspecified cells. Similar position dependence is commonly observed when various homeotic genes controlling the body segments are ectopically expressed. The autonomous and nonautonomous apoptosis caused by ss is regulated by a novel leucine-rich repeat family transmembrane protein, Fish-lips (Fili) that interacts with surrounding normal cells. These data support a mechanism in which the lack of some membrane proteins helps to recognize the presence of different cell types and direct these cells to an apoptotic fate in order to exclude them from the normal developing field.


1985 ◽  
Vol 78 (1) ◽  
pp. 105-115 ◽  
Author(s):  
R.M. Brown ◽  
C.A. Middleton

The behaviour in culture of epithelial cells derived from chick embryo pigmented retina epithelium (PRE), corneal epithelium (CE) and epidermis has been studied using time-lapse cinemicrography. The analysis concentrated on the morphology and movement of individual isolated cells, lacking contacts with other cells, during a 24h period starting 1–3 h after the cells were plated out in primary cultures. Isolated cells from all three sources could change morphology and reversibly exhibited either a poorly spread or a well-spread morphology. While poorly spread, the different cell types all appeared similar and all blebbed vigorously. In contrast, while well spread, the cells did not bleb significantly but there were other differences between them. Well-spread CE cells were always polarized by the presence of a dominant leading lamella but well-spread PRE cells were always unpolarized. Well-spread epidermal cells exhibited both a polarized and an unpolarized morphology. The tendency of individual isolated cells to change morphology varied with cell type. PRE cells were the most stable. Nearly 80% of them retained the same morphology throughout the period of analysis and only 1% of them showed three or more changes in morphology during this period. In contrast, 22% of CE cells and 37% of epidermal cells showed three or more changes in morphology during the period of observation. Isolated cells of all three types spent a greater proportion of the time exhibiting a poorly spread morphology than they spent exhibiting any alternative well-spread morphology. The analysis revealed a relationship between the morphology of isolated cells and the speed of their locomotion. Only cells with a well-spread polarized morphology showed significant movement. CE and epidermal cells with this morphology moved three to four times faster than their counter-parts with a poorly spread morphology or, in the case of epidermal cells, with a well-spread but unpolarized morphology. Actively moving PRE cells were not seen and this correlates with the absence of cells with a well-spread polarized morphology from cultures of this type. These findings are discussed in the light of similar investigations of cell behaviour in other epithelial cell types and fibroblasts.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


1992 ◽  
Vol 67 (01) ◽  
pp. 154-160 ◽  
Author(s):  
P Meulien ◽  
M Nishino ◽  
C Mazurier ◽  
K Dott ◽  
G Piétu ◽  
...  

SummaryThe cloning of the cDNA encoding von Willebrand factor (vWF) has revealed that it is synthesized as a large precursor (pre-pro-vWF) molecule and it is now clear that the prosequence or vWAgll is responsible for the intracellular multimerization of vWF. We have cloned the complete vWF cDNA and expressed it using a recombinant vaccinia virus as vector. We have characterized the structure and function of the recombinant vWF (rvWF) secreted from five different cell types: baby hamster kidney (BHK), Chinese hamster ovary (CHO), human fibroblasts (143B), mouse fibroblasts (L) and primary embryonic chicken cells. Forty-eight hours after infection, the quantity of vWF antigen found in the cell supernatant varied from 3 to 12 U/dl depending on the cell type. By SDS-agarose gel electrophoresis, the percentage of high molecular weight forms of vWF varied from 39 to 49% relative to normal plasma for BHK, CHO, 143B and chicken cells but was less than 10% for L cells. In all cell types, the two anodic subbands of each multimer were missing. The two cathodic subbands were easily detected only in BHK and L cells. By SDS-PAGE of reduced samples, pro-vWF was present in similar quantity to the fully processed vWF subunit in L cells, present in moderate amounts in BHK and CHO and in very low amounts in 143B and chicken cells. rvWF from all cells bound to collagen and to platelets in the presence of ristocetin, the latter showing a high correlation between binding efficiency and degree of multimerization. rvWF from all cells was also shown to bind to purified FVIII and in this case binding appeared to be independent of the degree of multimerization. We conclude that whereas vWF is naturally synthesized only by endothelial cells and megakaryocytes, it can be expressed in a biologically active form from various other cell types.


Acta Naturae ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 79-86 ◽  
Author(s):  
P. V. Elizar’ev ◽  
D. V. Lomaev ◽  
D. A. Chetverina ◽  
P. G. Georgiev ◽  
M. M. Erokhin

Maintenance of the individual patterns of gene expression in different cell types is required for the differentiation and development of multicellular organisms. Expression of many genes is controlled by Polycomb (PcG) and Trithorax (TrxG) group proteins that act through association with chromatin. PcG/TrxG are assembled on the DNA sequences termed PREs (Polycomb Response Elements), the activity of which can be modulated and switched from repression to activation. In this study, we analyzed the influence of transcriptional read-through on PRE activity switch mediated by the yeast activator GAL4. We show that a transcription terminator inserted between the promoter and PRE doesnt prevent switching of PRE activity from repression to activation. We demonstrate that, independently of PRE orientation, high levels of transcription fail to dislodge PcG/TrxG proteins from PRE in the absence of a terminator. Thus, transcription is not the main factor required for PRE activity switch.


Sign in / Sign up

Export Citation Format

Share Document