scholarly journals Plant Secondary Metabolite Transporters: Diversity, Functionality, and Their Modulation

2021 ◽  
Vol 12 ◽  
Author(s):  
Panchsheela Nogia ◽  
Pratap Kumar Pati

Secondary metabolites (SMs) play crucial roles in the vital functioning of plants such as growth, development, defense, and survival via their transportation and accumulation at the required site. However, unlike primary metabolites, the transport mechanisms of SMs are not yet well explored. There exists a huge gap between the abundant presence of SM transporters, their identification, and functional characterization. A better understanding of plant SM transporters will surely be a step forward to fulfill the steeply increasing demand for bioactive compounds for the formulation of herbal medicines. Thus, the engineering of transporters by modulating their expression is emerging as the most viable option to achieve the long-term goal of systemic metabolic engineering for enhanced metabolite production at minimum cost. In this review article, we are updating the understanding of recent advancements in the field of plant SM transporters, particularly those discovered in the past two decades. Herein, we provide notable insights about various types of fully or partially characterized transporters from the ABC, MATE, PUP, and NPF families including their diverse functionalities, structural information, potential approaches for their identification and characterization, several regulatory parameters, and their modulation. A novel perspective to the concept of “Transporter Engineering” has also been unveiled by highlighting its potential applications particularly in plant stress (biotic and abiotic) tolerance, SM accumulation, and removal of anti-nutritional compounds, which will be of great value for the crop improvement program. The present study creates a roadmap for easy identification and a better understanding of various transporters, which can be utilized as suitable targets for transporter engineering in future research.

Author(s):  
Subbiah Latha ◽  
Palanisamy Selvamani ◽  
Thangavelu Prabha

: Natural products have a unique place in the healthcare industry. The genus Commiphora emerged as a potential medicinal with huge benefits as evidenced through its use in various traditional and modern systems of medicine. Therefore, we aimed to prepare a concise review on the pharmacological activities and the indigenous uses of various plant species belonging to the genus Commiphora along with the structural information of various active botanical ingredients present in these plants based on the published literatures and scientific reports. To collect the various published literatures on Commiphora in various journals; to study and classify the available information on the pharmacological uses and chemical constituents; and to present the gathered information as a precise review to serve as a potential reference for future research. Pharmacological and phytochemical data on Commiphora plant species were collected from various journals, books, reference materials, websites including scientific databases, etc for compilation. This review article describes the various pharmacological properties of plants of Commiphora species viz., Anti-arthritic and anti-inflammatory, Anti-atherogenic, Antibacterial, Anti-coagulant, Anti-dicrocoeliasis, Anti-epileptic, Anti-fascioliasis, Anti-fungal, Anti-heterophyidiasis, Anti-hyper cholesterolemic, Anti-hyperlipidemic, Anti-hypothyroidism, Anti-obesity, Anti-osteoarthritic, Anti-osteoclastogenesis, Anti-oxidant, Anti-parasitic, Anti-pyretic, Anti-schistosomiasis, Anti-septic, Anti-thrombotic, Anti-ulcer, Cardioprotective, COX enzyme inhibitory, Cytotoxic /Anti-carcinogenic/Anti-cancer, DNA cleavage, Hypotensive, Inhibits lipid peroxidation, Inhibits NO and NO synthase production, Insecticidal, Local anesthetic, Molluscicidal, Smooth muscle relaxant, Tick repellent activities along with toxicity studies. Furthermore, the review also included various secondary metabolites isolated from various species of Commiphora genus along with their chemical structures serve as a ready resource for researchers. We conclude that the plant species belonging to the genus Commiphora possesses abundant pharmacological properties with a huge treasure of diverse secondary metabolites within themselves. This review indicates the necessity of further in-depth research, pre-clinical and clinical studies with Commiphora genus which may help to detect the unidentified potential of the Commiphora plant species.


2018 ◽  
Author(s):  
Lorraine Tudor Car ◽  
Bhone Myint Kyaw ◽  
Josip Car

BACKGROUND Digital technology called Virtual Reality (VR) is increasingly employed in health professions’ education. Yet, based on the current evidence, its use is narrowed around a few most applications and disciplines. There is a lack of an overview that would capture the diversity of different VR applications in health professions’ education and inform its use and research. OBJECTIVE This narrative review aims to explore different potential applications of VR in health professions’ education. METHODS The narrative synthesis approach to literature review was used to analyse the existing evidence. RESULTS We outline the role of VR features such as immersion, interactivity and feedback and explain the role of VR devices. Based on the type and scope of educational content VR can represent space, individuals, objects, structures or their combination. Application of VR in medical education encompasses environmental, organ and micro level. Environmental VR focuses on training in relation to health professionals’ environment and human interactions. Organ VR educational content targets primarily human body anatomy; and micro VR microscopic structures at the level of cells, molecules and atoms. We examine how different VR features and health professional education areas match these three VR types. CONCLUSIONS We conclude by highlighting the gaps in the literature and providing suggestions for future research.


2021 ◽  
Vol 10 (1) ◽  
pp. 456-475
Author(s):  
Efat Zohra ◽  
Muhammad Ikram ◽  
Ahmad A. Omar ◽  
Mujahid Hussain ◽  
Seema Hassan Satti ◽  
...  

Abstract In the present era, due to the increasing incidence of environmental stresses worldwide, the developmental growth and production of agriculture crops may be restrained. Selenium nanoparticles (SeNPs) have precedence over other nanoparticles because of the significant role of selenium in activating the defense system of plants. In addition to beneficial microorganisms, the use of biogenic SeNPs is known as an environmentally friendly and ecologically biocompatible approach to enhance crop production by alleviating biotic and abiotic stresses. This review provides the latest development in the green synthesis of SeNPs by using the results of plant secondary metabolites in the biogenesis of nanoparticles of different shapes and sizes with unique morphologies. Unfortunately, green synthesized SeNPs failed to achieve significant attention in the agriculture sector. However, research studies were performed to explore the application potential of plant-based SeNPs in alleviating drought, salinity, heavy metal, heat stresses, and bacterial and fungal diseases in plants. This review also explains the mechanistic actions that the biogenic SeNPs acquire to alleviate biotic and abiotic stresses in plants. In this review article, the future research that needs to use plant-mediated SeNPs under the conditions of abiotic and biotic stresses are also highlighted.


2021 ◽  
pp. 000313482110111
Author(s):  
Krista L. Haines ◽  
Benjamin P. Nguyen ◽  
Ioana Antonescu ◽  
Jennifer Freeman ◽  
Christopher Cox ◽  
...  

Introduction Advanced directives (ADs) provide a framework from which families may understand patient’s wishes. However, end-of-life planning may not be prioritized by everyone. This analysis aimed to determine what populations have ADs and how they affected trauma outcomes. Methods Adult trauma patients recorded in the American College of Surgeons Trauma Quality Improvement Program (TQIP) from 2013-2015 were included. The primary outcome was presence of an AD. Secondary outcomes included mortality, length of stay (LOS), mechanical ventilation, ICU admission/LOS, withdrawal of life-sustaining measures, and discharge disposition. Multivariable logistic regression models were developed for outcomes. Results 44 705 patients were included in the analyses. Advanced directives were present in 1.79% of patients. The average age for patients with ADs was 77.8 ± 10.7. African American (odds ratio (OR) .53, confidence intervals [CI] .36-.79) and Asian (OR .22, CI .05-.91) patients were less likely to have ADs. Conversely, Medicaid (OR 1.70, CI 1.06-2.73) and Medicare (OR 1.65, CI 1.25-2.17) patients were more likely to have ADs as compared to those with private insurance. The presence of ADs was associated with increased hospital mortality (OR 2.84, CI 2.19-3.70), increased transition to comfort measures (OR 2.87, CI 2.08-3.95), and shorter LOS (CO −.74, CI −1.26-.22). Patients with ADs had an increased odds of hospice care (OR 4.24, CI 3.18-5.64). Conclusion Advanced directives at admission are uncommon, particularly among African Americans and Asians. The presence of ADs was associated with increased mortality, use of mechanical ventilation, admission to the ICU, withdrawal of life-sustaining measures, and hospice. Future research should target expansion of ADs among minority populations to alleviate disparities in end-of-life treatment.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 132
Author(s):  
Nilufar Z. Mamadalieva ◽  
Davlat Kh. Akramov ◽  
Ludger A. Wessjohann ◽  
Hidayat Hussain ◽  
Chunlin Long ◽  
...  

The genus Lagochilus (Lamiaceae) is native to Central, South-Central, and Eastern Asia. It comprises 44 species, which have been commonly used as herbal medicines for the treatments of various ailments for thousands of years, especially in Asian countries. This review aims to summarize the chemical constituents and pharmacological activities of species from the genus Lagochilus to unveil opportunities for future research. In addition, we provide some information about their traditional uses, botany, and diversity. More than 150 secondary metabolites have been reported from Lagochilus, including diterpenes, flavonoids, phenolic compounds, triterpenoids, iridoid glycosides, lignans, steroids, alkaloids, polysaccharides, volatile, non-volatile and aromatic compounds, lipids, carbohydrates, minerals, vitamins, and other secondary metabolites. In vitro and in vivo pharmacological studies on the crude extracts, fractions, and isolated compounds from Lagochilus species showed hemostatic, antibacterial, anti-inflammatory, anti-allergic, cytotoxic, enzyme inhibitory, antispasmodic, hypotensive, sedative, psychoactive, and other activities.


2021 ◽  
Vol 22 ◽  
Author(s):  
Soma Ghosh ◽  
Malathi Bheri ◽  
Girdhar K. Pandey

: Plant systems have developed calcium (Ca2+) signaling as an important mechanism of regulation of stress perception, developmental cues, and responsive gene expression. The post-genomic era has witnessed the successful unravelling of the functional characterization of genes and the creation of large datasets of molecular information. The major elements of Ca2+ signaling machinery involve Ca2+ sensors and responders such as Calmodulin (CaM), Calmodulin-like proteins (CMLs), Ca2+/CaM-dependent protein kinases (CCaMK), Ca2+-dependent protein kinases (CDPKs), Calcineurin B-like proteins (CBLs) as well as transporters, such as Cyclic nucleotide-gated channels (CNGCs), Glutamate-like receptors (GLRs), Ca2+-ATPases, Ca2+/H+ exchangers (CAXs) and mechanosensitive channels. These elements play an important role in the regulation of physiological processes and plant responses to various stresses. Detailed genomic analysis can help us in the identification of potential molecular targets that can be exploited towards the development of stress-tolerant crops. The information sourced from model systems through omics approaches helps in the prediction and simulation of regulatory networks involved in responses to different stimuli at the molecular and cellular levels. The molecular delineation of Ca2+ signaling pathways could be the stepping stone for engineering climate-resilient crop plants. Here, we review the recent developments in Ca2+ signaling in the context of transport, responses, and adaptations significant for crop improvement through functional genomics approaches.


2018 ◽  
Vol 6 (40) ◽  
pp. 10672-10686 ◽  
Author(s):  
Qing Zhang ◽  
Huanli Dong ◽  
Wenping Hu

This article places special focus on the recent research progress of the EP method in synthesizing CPs. In particular, their potential applications as 2D CPs are summarized, with a basic introduction of the EP method, its use in synthesizing CPs as well as the promising applications of the obtained CPs in different fields. Discussions of current challenges in this field and future research directions are also given.


Author(s):  
Muhammad Arsalan Khan ◽  
Wim Ectors ◽  
Tom Bellemans ◽  
Davy Janssens ◽  
Geert Wets

Unmanned aerial vehicles (UAVs), commonly referred to as drones, are one of the most dynamic and multidimensional emerging technologies of the modern era. This technology has recently found multiple potential applications within the transportation field, ranging from traffic surveillance applications to traffic network analysis. To conduct a UAV-based traffic study, extremely diligent planning and execution are required followed by an optimal data analysis and interpretation procedure. In this study, however, the main focus was on the processing and analysis of UAV-acquired traffic footage. A detailed methodological framework for automated UAV video processing is proposed to extract the trajectories of multiple vehicles at a particular road segment. Such trajectories can be used either to extract various traffic parameters or to analyze traffic safety situations. The proposed framework, which provides comprehensive guidelines for an efficient processing and analysis of a UAV-based traffic study, comprises five components: preprocessing, stabilization, georegistration, vehicle detection and tracking, and trajectory management. Until recently, most traffic-focused UAV studies have employed either manual or semiautomatic processing techniques. In contrast, this paper presents an in-depth description of the proposed automated framework followed by a description of a field experiment conducted in the city of Sint-Truiden, Belgium. Future research will mainly focus on the extension of the applications of the proposed framework in the context of UAV-based traffic monitoring and analysis.


2016 ◽  
Vol 4 ◽  
pp. 107-120 ◽  
Author(s):  
D Gauchan ◽  
K P Pant ◽  
B K Joshi

This study assesses economic benefits of international exchange and flow of key rice germplasm in Nepal under globally operated multilateral system of facilitated access using a case of an improved rice variety Khumal-4. Khumal-4 rice is popular and widely grown in mid hills region of Nepal which was developed by crossing a high yielding dwarf foreign sourced germplasm IR-28 with a local Nepali variety Pokharilo Masino. Economic benefits of Khumal-4 rice adoption and impact was analysed using economic surplus model, where additional productivity and profitability gained from developing Khumal-4 was estimated in monetary value in comparison with existing farmers’ variety Pokharilo masino. The finding showed that Khumal-4 covered 9% of rice area in the mid-hills and 7% in the mountains during year 2010-12 years covering about 40 thousand hectares of rice area. Data show that there is a clear yield gain of 1.25 mt per hectare with cost in rice yield equivalent when farmers switch from traditional Pokhareli Masino to improved Khumal-4 variety. Estimation of additional revenue per hectare with total adoption area of Khumal-4 in prevailing market price in Nepal was NRs 1.07 billion (US $ 11 million) per annum. This is reasonable economic benefits obtained annually from flow of foreign sourced genes (IR-28) for the development of an improved Khumal-4 rice variety in Nepal. This finding indicates that access to foreign germplasm is important for ensuring national food security and gaining higher economic benefits in the country.Agronomy Journal of Nepal (Agron JN) vol. 4, 2016


2021 ◽  
Vol 58 (2) ◽  
pp. 279-286
Author(s):  
Sandhani Saikia ◽  
Pratap Jyoti Handique ◽  
Mahendra K Modi

Genetic diversity is the source of novel allelic combinations that can be efficiently utilized in any crop improvement program. To facilitate future crop improvement programs in rice, a study was designed to identify the underlying genetic variations in the Sali rice germplasms of Assam using SSR markers. The 129 SSR markers that were used in the study amplified a total of 765 fragments with an average of 5.93 alleles per locus. The Shannon's Information Index was found to be in the range from 0.533 to 1.786. The Polymorphism Information Content (PIC) fell into the range from 0.304 to 0.691 with a mean value of 0.55. The overall FST value was found to be 0.519 that indicated the presence of genetic differentiation amongst the genotypes used in the study. The Sali population was divided into two clusters. The information obtained from the present study will facilitate the genetic improvement of Sali rice cultivars.


Sign in / Sign up

Export Citation Format

Share Document