scholarly journals The Complex Architecture of Plant Cuticles and Its Relation to Multiple Biological Functions

2021 ◽  
Vol 12 ◽  
Author(s):  
Nicolas Reynoud ◽  
Johann Petit ◽  
Cécile Bres ◽  
Marc Lahaye ◽  
Christophe Rothan ◽  
...  

Terrestrialization of vascular plants, i.e., Angiosperm, is associated with the development of cuticular barriers that prevent biotic and abiotic stresses and support plant growth and development. To fulfill these multiple functions, cuticles have developed a unique supramolecular and dynamic assembly of molecules and macromolecules. Plant cuticles are not only an assembly of lipid compounds, i.e., waxes and cutin polyester, as generally presented in the literature, but also of polysaccharides and phenolic compounds, each fulfilling a role dependent on the presence of the others. This mini-review is focused on recent developments and hypotheses on cuticle architecture–function relationships through the prism of non-lipid components, i.e., cuticle-embedded polysaccharides and polyester-bound phenolics.

2021 ◽  
Vol 12 ◽  
Author(s):  
Lisha Fang ◽  
Yanmei Wang

MicroRNAs (miRNAs) are small (∼21-nucleotides) non-coding RNAs found in plant and animals. MiRNAs function as critical post-transcriptional regulators of gene expression by binding to complementary sequences in their target mRNAs, leading to mRNA destabilization and translational inhibition. Plant miRNAs have some distinct characteristics compared to their animal counterparts, including greater evolutionary conservation and unique miRNA processing methods. The lifecycle of a plant begins with embryogenesis and progresses through seed germination, vegetative growth, reproductive growth, flowering and fruiting, and finally senescence and death. MiRNAs participate in the transformation of plant growth and development and directly monitor progression of these processes and the expression of certain morphological characteristics by regulating transcription factor genes involved in cell growth and differentiation. In woody plants, a large and rapidly increasing number of miRNAs have been identified, but their biological functions are largely unknown. In this review, we summarize the progress of miRNA research in woody plants to date. In particular, we discuss the potential roles of these miRNAs in growth, development, and biotic and abiotic stresses responses in woody plants.


2003 ◽  
Vol 149 (2) ◽  
pp. 79-90 ◽  
Author(s):  
ML Raffin-Sanson ◽  
Y de Keyzer ◽  
X Bertagna

Proopiomelanocortin (POMC) is the polypeptide precursor of ACTH. First discovered in anterior pituitary corticotroph cells, it has more recently been revealed to have many other physiological aspects. The fine molecular mechanisms of ACTH biosynthesis show that ACTH is but one piece of a puzzle which contains many other peptides. Present in various tIssues, among which are pituitary, hypothalamus, central nervous system and skin, POMC undergoes extensive post-translational processing. This processing is tIssue-specific and generates, depending on the case, various sets of peptides involved in completely diverse biological functions. POMC expressed in corticotroph cells of the pituitary is necessary for adrenal function. Recent developments have shown that POMC-expressing neurons in the brain play a major role in the control of pain and energy homeostasis. Local production of POMC-derived peptides in skin may influence melanogenesis. A still unknown function in the placenta is likely.POMC has become a paradigmatic polypeptide precursor model illustrating the variable roles of a single gene and its various products in different localities.


1979 ◽  
pp. 581-591
Author(s):  
Luigi M. De Luca ◽  
Sergio Adamo ◽  
Pangala V. Bhat ◽  
Wlodzimierz Sasak ◽  
Carol S. Silverman-Jones ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 769 ◽  
Author(s):  
Fuchao Jia ◽  
Shuo Wang ◽  
Yan Man ◽  
Parveen Kumar ◽  
Bo Liu

[Ru(bpy)2dppz]2+ and [Ru(phen)2dppz]2+ as the light switches of the deoxyribose nucleic acid (DNA) molecule have attracted much attention and have become a powerful tool for exploring the structure of the DNA helix. Their interactions have been intensively studied because of the excellent photophysical and photochemical properties of ruthenium compounds. In this perspective, this review describes the recent developments in the interactions of these two classic intercalated compounds with a DNA helix. The mechanism of the molecular light switch effect and the selectivity of these two compounds to different forms of a DNA helix has been discussed. In addition, the specific binding modes between them have been discussed in detail, for a better understanding the mechanism of the light switch and the luminescence difference. Finally, recent studies of single molecule force spectroscopy have also been included so as to precisely interpret the kinetics, equilibrium constants, and the energy landscape during the process of the dynamic assembly of ligands into a single DNA helix.


1979 ◽  
Vol 51 (3) ◽  
pp. 581-592 ◽  
Author(s):  
L. M. De Luca ◽  
Sergio Adamo ◽  
P. V. Bhat ◽  
W. Sasak ◽  
C. S. Silverman-Jones ◽  
...  

2015 ◽  
Vol 35 (11) ◽  
pp. 1886-1897 ◽  
Author(s):  
Jonathan A. Cooper ◽  
Tomonori Kaneko ◽  
Shawn S. C. Li

Three classes of E3 ubiquitin ligases, members of the Cbl, Hakai, and SOCS-Cul5-RING ligase families, stimulate the ubiquitination of phosphotyrosine-containing proteins, including receptor and nonreceptor tyrosine kinases and their phosphorylated substrates. Because ubiquitination frequently routes proteins for degradation by the lysosome or proteasome, these E3 ligases are able to potently inhibit tyrosine kinase signaling. Their loss or mutational inactivation can contribute to cancer, autoimmunity, or endocrine disorders, such as diabetes. However, these ligases also have biological functions that are independent of their ubiquitination activity. Here we review relevant literature and then focus on more-recent developments in understanding the structures, substrates, and pathways through which the phosphotyrosine-specific ubiquitin ligases regulate diverse aspects of cell biology.


Biologia ◽  
2015 ◽  
Vol 70 (6) ◽  
Author(s):  
Yamilet Coll ◽  
Francisco Coll ◽  
Asunción Amorós ◽  
Merardo Pujol

AbstractBrassinosteroids are plant steroidal compounds involved in many functions related with plant development, metabolism, signalling and defense against a wide range of biotic and abiotic stresses. Plant architecture, which has a major effect on crop yield, is strongly influenced by brassinosteroids action. Brassinosteroids are recognized as key regulators of plant growth and development involved in a broad spectrum of processes at the molecular, cellular, and physiological levels. These roles suggest that many of the constraints of present agricultural production might be alleviated by manipulation of genetic determinants dealing with brassinosteroids, as well as by its exogenous application. Brassinosteroids are natural, nontoxic, non-genotoxic, biosafe, and eco-friendly, and can therefore be used in agriculture and horticulture to improve the growth, yields, quality, and tolerance of various plants to biotic and abiotic stresses. The present paper comprehensively reviews the latest results in the field of brassinosteroids and envisages future impacts in agriculture.


2021 ◽  
Vol 22 (3) ◽  
pp. 1013
Author(s):  
Shuwei Luo ◽  
Xifeng Li ◽  
Yan Zhang ◽  
Yunting Fu ◽  
Baofang Fan ◽  
...  

Autophagy is a major quality control system for degradation of unwanted or damaged cytoplasmic components to promote cellular homeostasis. Although non-selective bulk degradation of cytoplasm by autophagy plays a role during cellular response to nutrient deprivation, the broad roles of autophagy are primarily mediated by selective clearance of specifically targeted components. Selective autophagy relies on cargo receptors that recognize targeted components and recruit them to autophagosomes through interaction with lapidated autophagy-related protein 8 (ATG8) family proteins anchored in the membrane of the forming autophagosomes. In mammals and yeast, a large collection of selective autophagy receptors have been identified that mediate the selective autophagic degradation of organelles, aggregation-prone misfolded proteins and other unwanted or nonnative proteins. A substantial number of selective autophagy receptors have also been identified and functionally characterized in plants. Some of the autophagy receptors in plants are evolutionarily conserved with homologs in other types of organisms, while a majority of them are plant-specific or plant species-specific. Plant selective autophagy receptors mediate autophagic degradation of not only misfolded, nonactive and otherwise unwanted cellular components but also regulatory and signaling factors and play critical roles in plant responses to a broad spectrum of biotic and abiotic stresses. In this review, we summarize the research on selective autophagy in plants, with an emphasis on the cargo recognition and the biological functions of plant selective autophagy receptors.


2020 ◽  
Vol 21 (1) ◽  
pp. 305 ◽  
Author(s):  
Geupil Jang ◽  
Youngdae Yoon ◽  
Yang Do Choi

To date, extensive studies have identified many classes of hormones in plants and revealed the specific, nonredundant signaling pathways for each hormone. However, plant hormone functions largely overlap in many aspects of plant development and environmental responses, suggesting that studying the crosstalk among plant hormones is key to understanding hormonal responses in plants. The phytohormone jasmonic acid (JA) is deeply involved in the regulation of plant responses to biotic and abiotic stresses. In addition, a growing number of studies suggest that JA plays an essential role in the modulation of plant growth and development under stress conditions, and crosstalk between JA and other phytohormones involved in growth and development, such as gibberellic acid (GA), cytokinin, and auxin modulate various developmental processes. This review summarizes recent findings of JA crosstalk in the modulation of plant growth and development, focusing on JA–GA, JA–cytokinin, and JA–auxin crosstalk. The molecular mechanisms underlying this crosstalk are also discussed.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Mohammad Saidur Rhaman ◽  
Shahin Imran ◽  
Farjana Rauf ◽  
Mousumi Khatun ◽  
Carol C. Baskin ◽  
...  

Plants are often exposed to abiotic stresses such as drought, salinity, heat, cold, and heavy metals that induce complex responses, which result in reduced growth as well as crop yield. Phytohormones are well known for their regulatory role in plant growth and development, and they serve as important chemical messengers, allowing plants to function during exposure to various stresses. Seed priming is a physiological technique involving seed hydration and drying to improve metabolic processes prior to germination, thereby increasing the percentage and rate of germination and improving seedling growth and crop yield under normal and various biotic and abiotic stresses. Seed priming allows plants to obtain an enhanced capacity for rapidly and effectively combating different stresses. Thus, seed priming with phytohormones has emerged as an important tool for mitigating the effects of abiotic stress. Therefore, this review discusses the potential role of priming with phytohormones to mitigate the harmful effects of abiotic stresses, possible mechanisms for how mitigation is accomplished, and roles of priming on the enhancement of crop production.


Sign in / Sign up

Export Citation Format

Share Document