Brassinosteroids roles and applications: an up-date

Biologia ◽  
2015 ◽  
Vol 70 (6) ◽  
Author(s):  
Yamilet Coll ◽  
Francisco Coll ◽  
Asunción Amorós ◽  
Merardo Pujol

AbstractBrassinosteroids are plant steroidal compounds involved in many functions related with plant development, metabolism, signalling and defense against a wide range of biotic and abiotic stresses. Plant architecture, which has a major effect on crop yield, is strongly influenced by brassinosteroids action. Brassinosteroids are recognized as key regulators of plant growth and development involved in a broad spectrum of processes at the molecular, cellular, and physiological levels. These roles suggest that many of the constraints of present agricultural production might be alleviated by manipulation of genetic determinants dealing with brassinosteroids, as well as by its exogenous application. Brassinosteroids are natural, nontoxic, non-genotoxic, biosafe, and eco-friendly, and can therefore be used in agriculture and horticulture to improve the growth, yields, quality, and tolerance of various plants to biotic and abiotic stresses. The present paper comprehensively reviews the latest results in the field of brassinosteroids and envisages future impacts in agriculture.

2020 ◽  
Vol 15 (1) ◽  
pp. 217-228
Author(s):  
Mohammad Faizan ◽  
Ahmad Faraz ◽  
Fareen Sami ◽  
Husna Siddiqui ◽  
Mohammad Yusuf ◽  
...  

AbstractPlant hormones play important roles in controlling how plants grow and develop. While metabolism provides the energy needed for plant survival, hormones regulate the pace of plant growth. Strigolactones (SLs) were recently defined as new phytohormones that regulate plant metabolism and, in turn, plant growth and development. This group of phytohormones is derived from carotenoids and has been implicated in a wide range of physiological functions including regulation of plant architecture (inhibition of bud outgrowth and shoot branching), photomorphogenesis, seed germination, nodulation, and physiological reactions to abiotic factors. SLs also induce hyphal branching in germinating spores of arbuscular mycorrhizal fungi (AMF), a process that is important for initiating the connection between host plant roots and AMF. This review outlines the physiological roles of SLs and discusses the significance of interactions between SLs and other phytohormones to plant metabolic responses.


2019 ◽  
Vol 20 (24) ◽  
pp. 6270 ◽  
Author(s):  
Tao Yang ◽  
Yuke Lian ◽  
Chongying Wang

Strigolactones (SLs) and karrikins (KARs) are both butenolide molecules that play essential roles in plant growth and development. SLs are phytohormones, with SLs having known functions within the plant they are produced in, while KARs are found in smoke emitted from burning plant matter and affect seeds and seedlings in areas of wildfire. It has been suggested that SL and KAR signaling may share similar mechanisms. The α/β hydrolases DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2), which act as receptors of SL and KAR, respectively, both interact with the F-box protein MORE AXILLARY GROWTH 2 (MAX2) in order to target SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE/D53 family members for degradation via the 26S proteasome. Recent reports suggest that SLs and/or KARs are also involved in regulating plant responses and adaptation to various abiotic stresses, particularly nutrient deficiency, drought, salinity, and chilling. There is also crosstalk with other hormone signaling pathways, including auxin, gibberellic acid (GA), abscisic acid (ABA), cytokinin (CK), and ethylene (ET), under normal and abiotic stress conditions. This review briefly covers the biosynthetic and signaling pathways of SLs and KARs, compares their functions in plant growth and development, and reviews the effects of any crosstalk between SLs or KARs and other plant hormones at various stages of plant development. We also focus on the distinct responses, adaptations, and regulatory mechanisms related to SLs and/or KARs in response to various abiotic stresses. The review closes with discussion on ways to gain additional insights into the SL and KAR pathways and the crosstalk between these related phytohormones.


2020 ◽  
Vol 21 (1) ◽  
pp. 305 ◽  
Author(s):  
Geupil Jang ◽  
Youngdae Yoon ◽  
Yang Do Choi

To date, extensive studies have identified many classes of hormones in plants and revealed the specific, nonredundant signaling pathways for each hormone. However, plant hormone functions largely overlap in many aspects of plant development and environmental responses, suggesting that studying the crosstalk among plant hormones is key to understanding hormonal responses in plants. The phytohormone jasmonic acid (JA) is deeply involved in the regulation of plant responses to biotic and abiotic stresses. In addition, a growing number of studies suggest that JA plays an essential role in the modulation of plant growth and development under stress conditions, and crosstalk between JA and other phytohormones involved in growth and development, such as gibberellic acid (GA), cytokinin, and auxin modulate various developmental processes. This review summarizes recent findings of JA crosstalk in the modulation of plant growth and development, focusing on JA–GA, JA–cytokinin, and JA–auxin crosstalk. The molecular mechanisms underlying this crosstalk are also discussed.


2020 ◽  
Vol 21 (5) ◽  
pp. 1792 ◽  
Author(s):  
Lei Tian ◽  
Xiaolong Lin ◽  
Jun Tian ◽  
Li Ji ◽  
Yalin Chen ◽  
...  

Plants are associated with hundreds of thousands of microbes that are present outside on the surfaces or colonizing inside plant organs, such as leaves and roots. Plant-associated microbiota plays a vital role in regulating various biological processes and affects a wide range of traits involved in plant growth and development, as well as plant responses to adverse environmental conditions. An increasing number of studies have illustrated the important role of microbiota in crop plant growth and environmental stress resistance, which overall assists agricultural sustainability. Beneficial bacteria and fungi have been isolated and applied, which show potential applications in the improvement of agricultural technologies, as well as plant growth promotion and stress resistance, which all lead to enhanced crop yields. The symbioses of arbuscular mycorrhizal fungi, rhizobia and Frankia species with their host plants have been intensively studied to provide mechanistic insights into the mutual beneficial relationship of plant–microbe interactions. With the advances in second generation sequencing and omic technologies, a number of important mechanisms underlying plant–microbe interactions have been unraveled. However, the associations of microbes with their host plants are more complicated than expected, and many questions remain without proper answers. These include the influence of microbiota on the allelochemical effect caused by one plant upon another via the production of chemical compounds, or how the monoculture of crops influences their rhizosphere microbial community and diversity, which in turn affects the crop growth and responses to environmental stresses. In this review, first, we systematically illustrate the impacts of beneficial microbiota, particularly beneficial bacteria and fungi on crop plant growth and development and, then, discuss the correlations between the beneficial microbiota and their host plants. Finally, we provide some perspectives for future studies on plant–microbe interactions.


2020 ◽  
Vol 21 (23) ◽  
pp. 9183
Author(s):  
Minmin Wang ◽  
Yanchen Tian ◽  
Chao Han ◽  
Chuanen Zhou ◽  
Ming-Yi Bai ◽  
...  

The PACLOBUTRAZOL-RESISTANCE (PRE) gene family encodes a group of atypical helix-loop-helix (HLH) proteins that act as the major hub integrating a wide range of environmental and hormonal signals to regulate plant growth and development. PRE1, as a positive regulator of cell elongation, activates HBI1 DNA binding by sequestering its inhibitor IBH1. Furthermore, PRE1 can be phosphorylated at Ser-46 and Ser-67, but how this phosphorylation regulates the functions of PRE1 remains unclear. Here, we used a phospho-mutant activity assay to reveal that the phosphorylation at Ser-67 negatively regulates the functions of PRE1 on cell elongation. Both of mutations of serine 46, either to phospho-dead alanine or phospho-mimicking glutamic acid, had no significant effects on the functions of PRE1. However, the mutation of serine 67 to glutamic acid (PRE1S67E-Ox), but not alanine (PRE1S67A-Ox), significantly reduced the promoting effects of PRE1 on cell elongation. The mutation of Ser-67 to Glu-67 impaired the interaction of PRE1 with IBH1 and resulted in PRE1 failing to inhibit the interaction between IBH1 and HBI1, losing the ability to induce the expression of the subsequent cell elongation-related genes. Furthermore, we showed that PRE1-Ox and PRE1S67A-Ox both suppressed but PRE1S67E-Ox had no strong effects on the dwarf phenotypes of IBH1-Ox. Our study demonstrated that the PRE1 activity is negatively regulated by the phosphorylation at Ser-67.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 239 ◽  
Author(s):  
Xiaolong Deng ◽  
Baoguang An ◽  
Hua Zhong ◽  
Jing Yang ◽  
Weilong Kong ◽  
...  

Sugars are critical for plant growth and development as suppliers of carbon and energy, as signal molecules, or as solute molecules for osmotic homeostasis. Monosaccharide transporter (MST) genes are involved in various processes of plant growth and development as well as in response to abiotic stresses. However, the evolution and their roles of MST genes in growth and development and in coping with abiotic stresses in rice are poorly known. Here, we identified 64 MST genes in rice genome, which are classified into seven subfamilies: STP, PLT, AZT, ERD, pGlcT, INT, and XTPH. MST genes are not evenly distributed between chromosomes (Chrs) with a bias to Chr 3, 4, 7, and 11, which could be a result of duplication of fragments harboring MST genes. In total, 12 duplication events were found in the rice MST family, among which, two pairs were derived from fragmental duplications and ten pairs were from tandem duplications. The synonymous and nonsynonymous substitution rates of duplicate gene pairs demonstrated that the MST family was under a strong negative selection during the evolution process. Furthermore, a comprehensive expression analysis conducted in 11 different tissues, three abiotic stresses, five hormone treatments, and three sugar treatments revealed different expression patterns of MST genes and indicated diversified functions of them. Our results suggest that MST genes play important roles not only in various abiotic stresses but also in hormone and sugar responses. The present results will provide a vital insight into the functional divergence of the MST family in the future study.


2018 ◽  
Vol 22 (3) ◽  
pp. 11-20
Author(s):  
Sławomir Kocira

AbstractContemporary agricultural engineering searches for “safe” methods of raising crop yields, using a combination of knowledge from a number of sciences. Thus, computer modelling of plant growth and development fits this range, because it has become an area of interdisciplinary research. Presentation of knowledge in the form of mathematical computer models is one of paradigms of agricultural production systems based on the scientific and practical knowledge and information. In the scientific activity concerning agricultural engineering research tasks related to mathematical modelling of agrobiological processes have been carried out for many years. Additionally, the use of modern forecasting techniques in agriculture may bring real financial advantages with regard to the fact that based on crop yield prediction estimation of their cultivation profitability is possible. Dynamic and continuous progress of computer and informative technologies creates new opportunities showing thus growth directions of agricultural engineering. Taking this into consideration, it should be emphasised that mathematical modelling constitutes a support for decision processes which take place in agricultural production. This article discusses mathematical models, where the analysed system is described with the use of mathematical formulas. The objective of the paper was to present the current state of knowledge on mathematical methods in describing and predicting seeds germination. Possibilities of their use and new challenges which occur in the description of seeds germination were presented.


2021 ◽  
Vol 14 (2) ◽  
pp. 5-18
Author(s):  
I. V. Kosakivska ◽  

Background. Gibberellins (GAs), a class of diterpenoid phytohormones, play an important role in regulation of plant growth and development. Among more than 130 different gibberellin molecules, only a few are bioactive. GA1, GA3, GA4, and GA7 regulate plant growth through promotion the degradation of the DELLA proteins, a family of nuclear growth repressors – negative regulator of GAs signaling. Recent studies on GAs biosynthesis, metabolism, transport, and signaling, as well as crosstalk with other phytohormones and environment have achieved great progress thanks to molecular genetics and functional genomics. Aim. In this review, we focused on the role of GAs in regulation of plant gtowth in abiotic stress conditions. Results. We represented a key information on GAs biosynthesis, signaling and functional activity; summarized current understanding of the crosstalk between GAs and auxin, cytokinin, abscisic acid and other hormones and what is the role of GAs in regulation of adaptation to drought, salinization, high and low temperature conditions, and heavy metal pollution. We emphasize that the effects of GAs depend primarily on the strength and duration of stress and the phase of ontogenesis and tolerance of the plant. By changing the intensity of biosynthesis, the pattern of the distribution and signaling of GAs, plants are able to regulate resistance to abiotic stress, increase viability and even avoid stress. The issues of using retardants – inhibitors of GAs biosynthesis to study the functional activity of hormones under abiotic stresses were discussed. Special attention was focused on the use of exogenous GAs for pre-sowing priming of seeds and foliar treatment of plants. Conclusion. Further study of the role of gibberellins in the acquisition of stress resistance would contribute to the development of biotechnology of exogenous use of the hormone to improve growth and increase plant yields under adverse environmental conditions.


2021 ◽  
Vol 22 (16) ◽  
pp. 8685
Author(s):  
Qian Li ◽  
Luyan Zhou ◽  
Yuhong Li ◽  
Dongping Zhang ◽  
Yong Gao

The NIGT1/HRS1/HHO transcription factor (TF) family is a new subfamily of the G2-like TF family in the GARP superfamily and contains two conserved domains: the Myb-DNA binding domain and the hydrophobic and globular domain. Some studies showed that NIGT1/HRS1/HHO TFs are involved in coordinating the absorption and utilization of nitrogen and phosphorus. NIGT1/HRS1/HHO TFs also play an important role in plant growth and development and in the responses to abiotic stresses. This review focuses on recent advances in the structural characteristics of the NIGT1/HRS1/HHO TF family and discusses how the roles and functions of the NIGT1/HRS1/HHO TFs operate in terms of in plant growth, development, and stress responses.


Sign in / Sign up

Export Citation Format

Share Document