scholarly journals Aging, Osteo-Sarcopenia, and Musculoskeletal Mechano-Transduction

2021 ◽  
Vol 2 ◽  
Author(s):  
Jenna M. Leser ◽  
Anicca Harriot ◽  
Heather V. Buck ◽  
Christopher W. Ward ◽  
Joseph P. Stains

The decline in the mass and function of bone and muscle is an inevitable consequence of healthy aging with early onset and accelerated decline in those with chronic disease. Termed osteo-sarcopenia, this condition predisposes the decreased activity, falls, low-energy fractures, and increased risk of co-morbid disease that leads to musculoskeletal frailty. The biology of osteo-sarcopenia is most understood in the context of systemic neuro-endocrine and immune/inflammatory alterations that drive inflammation, oxidative stress, reduced autophagy, and cellular senescence in the bone and muscle. Here we integrate these concepts to our growing understanding of how bone and muscle senses, responds and adapts to mechanical load. We propose that age-related alterations in cytoskeletal mechanics alter load-sensing and mechano-transduction in bone osteocytes and muscle fibers which underscores osteo-sarcopenia. Lastly, we examine the evidence for exercise as an effective countermeasure to osteo-sarcopenia.

Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 253
Author(s):  
Graciela Gavia-García ◽  
Juana Rosado-Pérez ◽  
Taide Laurita Arista-Ugalde ◽  
Itzen Aguiñiga-Sánchez ◽  
Edelmiro Santiago-Osorio ◽  
...  

A great amount of scientific evidence supports that Oxidative Stress (OxS) can contribute to telomeric attrition and also plays an important role in the development of certain age-related diseases, among them the metabolic syndrome (MetS), which is characterised by clinical and biochemical alterations such as obesity, dyslipidaemia, arterial hypertension, hyperglycaemia, and insulin resistance, all of which are considered as risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which are associated in turn with an increase of OxS. In this sense, we review scientific evidence that supports the association between OxS with telomere length (TL) dynamics and the relationship with MetS components in aging. It was analysed whether each MetS component affects the telomere length separately or if they all affect it together. Likewise, this review provides a summary of the structure and function of telomeres and telomerase, the mechanisms of telomeric DNA repair, how telomere length may influence the fate of cells or be linked to inflammation and the development of age-related diseases, and finally, how the lifestyles can affect telomere length.


Gerontology ◽  
2017 ◽  
Vol 63 (6) ◽  
pp. 580-589 ◽  
Author(s):  
Juan Diego Naranjo ◽  
Jenna L. Dziki ◽  
Stephen F. Badylak

Sarcopenia is a complex and multifactorial disease that includes a decrease in the number, structure and physiology of muscle fibers, and age-related muscle mass loss, and is associated with loss of strength, increased frailty, and increased risk for fractures and falls. Treatment options are suboptimal and consist of exercise and nutrition as the cornerstone of therapy. Current treatment principles involve identification and modification of risk factors to prevent the disease, but these efforts are of limited value to the elderly individuals currently affected by sarcopenia. The development of new and effective therapies for sarcopenia is challenging. Potential therapies can target one or more of the proposed multiple etiologies such as the loss of regenerative capacity of muscle, age-related changes in the expression of signaling molecules such as growth hormone, IGF-1, myostatin, and other endocrine signaling molecules, and age-related changes in muscle physiology like denervation and mitochondrial dysfunction. The present paper reviews regenerative medicine strategies that seek to restore adequate skeletal muscle structure and function including exogenous delivery of cells and pharmacological therapies to induce myogenesis or reverse the physiologic changes that result in the disease. Approaches that modify the microenvironment to provide an environment conducive to reversal and mitigation of the disease represent a potential regenerative medicine approach that is discussed herein.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
David Mantle ◽  
Robert A. Heaton ◽  
Iain P. Hargreaves

The ageing brain is characterised by changes at the physical, histological, biochemical and physiological levels. This ageing process is associated with an increased risk of developing a number of neurological disorders, notably Alzheimer’s disease and Parkinson’s disease. There is evidence that mitochondrial dysfunction and oxidative stress play a key role in the pathogenesis of such disorders. In this article, we review the potential therapeutic role in these age-related neurological disorders of supplementary coenzyme Q10, a vitamin-like substance of vital importance for normal mitochondrial function and as an antioxidant. This review is concerned primarily with studies in humans rather than in vitro studies or studies in animal models of neurological disease. In particular, the reasons why the outcomes of clinical trials supplementing coenzyme Q10 in these neurological disorders is discussed.


2021 ◽  
Vol 22 (22) ◽  
pp. 12536
Author(s):  
Szymon Turkiewicz ◽  
Marta Ditmer ◽  
Marcin Sochal ◽  
Piotr Białasiewicz ◽  
Dominik Strzelecki ◽  
...  

Obstructive sleep apnea (OSA) is chronic disorder which is characterized by recurrent pauses of breathing during sleep which leads to hypoxia and its two main pathological sequelae: oxidative stress and chronic inflammation. Both are also associated with cellular senescence. As OSA patients present with higher prevalence of age-related disorders, such as atrial hypertension or diabetes mellitus type 2, a relationship between OSA and accelerated aging is observable. Furthermore, it has been established that these OSA are associated with telomere shortening. This process in OSA is likely caused by increased oxidative DNA damage due to increased reactive oxygen species levels, DNA repair disruptions, hypoxia, chronic inflammation, and circadian clock disturbances. The aim of the review is to summarize study outcomes on changes in leukocyte telomere length (LTL) in OSA patients and describe possible molecular mechanisms which connect cellular senescence and the pathophysiology of OSA. The majority of OSA patients are characterized by LTL attrition due to oxidative stress, hypoxia and inflammation, which make a kind of positive feedback loop, and circadian clock disturbance.


2018 ◽  
Vol 19 (8) ◽  
pp. 2317 ◽  
Author(s):  
Kai Kaarniranta ◽  
Jakub Kajdanek ◽  
Jan Morawiec ◽  
Elzbieta Pawlowska ◽  
Janusz Blasiak

PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) is a transcriptional coactivator of many genes involved in energy management and mitochondrial biogenesis. PGC-1α expression is associated with cellular senescence, organismal aging, and many age-related diseases, including AMD (age-related macular degeneration), an important global issue concerning vision loss. We and others have developed a model of AMD pathogenesis, in which stress-induced senescence of retinal pigment epithelium (RPE) cells leads to AMD-related pathological changes. PGC-1α can decrease oxidative stress, a key factor of AMD pathogenesis related to senescence, through upregulation of antioxidant enzymes and DNA damage response. PGC-1α is an important regulator of VEGF (vascular endothelial growth factor), which is targeted in the therapy of wet AMD, the most devastating form of AMD. Dysfunction of mitochondria induces cellular senescence associated with AMD pathogenesis. PGC-1α can improve mitochondrial biogenesis and negatively regulate senescence, although this function of PGC-1α in AMD needs further studies. Post-translational modifications of PGC-1α by AMPK (AMP kinase) and SIRT1 (sirtuin 1) are crucial for its activation and important in AMD pathogenesis.


2020 ◽  
Vol 21 (15) ◽  
pp. 5236 ◽  
Author(s):  
Evelyn Ferri ◽  
Emanuele Marzetti ◽  
Riccardo Calvani ◽  
Anna Picca ◽  
Matteo Cesari ◽  
...  

Skeletal muscle aging is associated with a significant loss of skeletal muscle strength and power (i.e., dynapenia), muscle mass and quality of life, a phenomenon known as sarcopenia. This condition affects nearly one-third of the older population and is one of the main factors leading to negative health outcomes in geriatric patients. Notwithstanding the exact mechanisms responsible for sarcopenia are not fully understood, mitochondria have emerged as one of the central regulators of sarcopenia. In fact, there is a wide consensus on the assumption that the loss of mitochondrial integrity in myocytes is the main factor leading to muscle degeneration. Mitochondria are also key players in senescence. It has been largely proven that the modulation of mitochondrial functions can induce the death of senescent cells and that removal of senescent cells improves musculoskeletal health, quality, and function. In this review, the crosstalk among mitochondria, cellular senescence, and sarcopenia will be discussed with the aim to elucidate the role that the musculoskeletal cellular senescence may play in the onset of sarcopenia through the mediation of mitochondria.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 94 ◽  
Author(s):  
Magdalena Rudzińska ◽  
Alessandro Parodi ◽  
Anastasia V. Balakireva ◽  
Olga E. Chepikova ◽  
Franco M. Venanzi ◽  
...  

Different molecular signaling pathways, biological processes, and intercellular communication mechanisms control longevity and are affected during cellular senescence. Recent data have suggested that organelle communication, as well as genomic and metabolic dysfunctions, contribute to this phenomenon. Oxidative stress plays a critical role by inducing structural modifications to biological molecules while affecting their function and catabolism and eventually contributing to the onset of age-related dysfunctions. In this scenario, proteins are not adequately degraded and accumulate in the cell cytoplasm as toxic aggregates, increasing cell senescence progression. In particular, carbonylation, defined as a chemical reaction that covalently and irreversibly modifies proteins with carbonyl groups, is considered to be a significant indicator of protein oxidative stress and aging. Here, we emphasize the role and dysregulation of the molecular pathways controlling cell metabolism and proteostasis, the complexity of the mechanisms that occur during aging, and their association with various age-related disorders. The last segment of the review details current knowledge on protein carbonylation as a biomarker of cellular senescence in the development of diagnostics and therapeutics for age-related dysfunctions.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1801 ◽  
Author(s):  
Bee Ling Tan ◽  
Mohd Esa Norhaizan

Despite an increase in life expectancy that indicates positive human development, a new challenge is arising. Aging is positively associated with biological and cognitive degeneration, for instance cognitive decline, psychological impairment, and physical frailty. The elderly population is prone to oxidative stress due to the inefficiency of their endogenous antioxidant systems. As many studies showed an inverse relationship between carotenoids and age-related diseases (ARD) by reducing oxidative stress through interrupting the propagation of free radicals, carotenoid has been foreseen as a potential intervention for age-associated pathologies. Therefore, the role of carotenoids that counteract oxidative stress and promote healthy aging is worthy of further discussion. In this review, we discussed the underlying mechanisms of carotenoids involved in the prevention of ARD. Collectively, understanding the role of carotenoids in ARD would provide insights into a potential intervention that may affect the aging process, and subsequently promote healthy longevity.


2012 ◽  
Vol 24 (1) ◽  
pp. 252 ◽  
Author(s):  
Robert O. Gilbert

Endometritis is common in post partum dairy cows and is associated with impaired reproductive performance reflected in reduced first service conception, reduced hazard of pregnancy over the breeding period and increased risk of reproductive culling. The observed effects may be mediated directly by bacterial products, such as lipopolysaccharide (LPS, endotoxin), or indirectly by inflammatory mediators, such as cytokines, eicosanoids, nitric oxide and oxidative stress affecting sperm, ovarian, uterine and embryonic function. An inflammatory milieu in the uterus has been associated with changes in sperm motility and function as well as increased sperm phagocytosis. Zygotes resulting from fertilisation of oocytes with sperm subjected to oxidative stress are less likely to develop to the blastocyst stage. In addition, LPS and tumour necrosis factor-α (TNFα) impair follicular steroidogenesis, growth and ovulation. Oocytes exposed to LPS or prostaglandin (PG) F2α during maturation are less likely to develop to blastocyst stage after fertilisation. Embryos exposed to inflammatory mediators during development have fewer trophoectoderm cells. Nitric oxide impairs development of preimplantation embryos and TNFα increases blastomere apoptosis. Endometritis in women has been associated with higher rates of implantation failure. Extragenital inflammation (e.g. mastitis) is also associated with an increased rate of embryonic loss in cattle. These observations make it clear that direct and indirect effects of endometritis, and inflammation in general, can interrupt successful reproduction at several crucial stages.


Sign in / Sign up

Export Citation Format

Share Document