scholarly journals Identification of Differentially Expressed Non-coding RNA Networks With Potential Immunoregulatory Roles During Salmonella Enteritidis Infection in Ducks

2021 ◽  
Vol 8 ◽  
Author(s):  
Yu Zhang ◽  
Xiaoqian Dong ◽  
Lie Hou ◽  
Zhengfeng Cao ◽  
Guoqiang Zhu ◽  
...  

Salmonella enterica serovar Enteritidis (S. Enteritidis) is a pathogen that can colonize the preovulatory follicles of poultry, thereby causing both reduced egg production and an elevated risk of foodborne salmonellosis in humans. Although a few studies have revealed S. Enteritidis preferentially invades the granulosa cell layer within these follicles, it can readily persist and proliferate through mechanisms that are not well-understood. In this study, we characterized competing endogenous RNA (ceRNA) regulatory networks within duck granulosa cells following time-course of S. Enteritidis challenge. The 8108 long non-coding RNAs (lncRNAs), 1545 circular RNAs (circRNAs), 542 microRNAs (miRNAs), and 4137 mRNAs (fold change ≥2; P < 0.01) were differentially expressed during S. Enteritidis challenge. Also, eight mRNAs, eight lncRNAs and five circRNAs were selected and the consistent expression trend was found between qRT-PCR detection and RNA-seq. Moreover, the target genes of these differentially expressed ncRNAs (including lncRNAs, circRNAs and miRNAs) were predicted, and significantly enriched in the innate immune response and steroidogenesis pathways. Then, the colocalization and coexpression analyses were conducted to investigate relationships between ncRNAs and mRNAs. The 16 differentially expressed miRNAs targeting 60 differentially expressed mRNAs were identified in granulosa cells at 3 and 6 h post-infection (hpi) and enriched in the MAPK, GnRH, cytokine-cytokine receptor interaction, Toll-like receptor, endocytosis, and oxidative phosphorylation signaling pathways. Additionally, underlying lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA networks were then constructed to further understand their interaction during S. Enteritidis infection. Lnc_012227 and novel_circ_0004892 were identified as ceRNAs, which could compete with miR-let-7g-5p and thereby indirectly modulating map3k8 expression to control S. Enteritidis infection. Together, our data thus identified promising candidate ncRNAs responsible for regulating S. Enteritidis infection in the preovulatory follicles of ducks, offering new insights regarding the ovarian transmission of this pathogen.

2021 ◽  
Vol 11 ◽  
Author(s):  
Min Cao ◽  
Xu Yan ◽  
Baofeng Su ◽  
Ning Yang ◽  
Qiang Fu ◽  
...  

Sebastes schlegelii, an important aquaculture species, has been widely cultured in East Asian countries. With the increase in the cultivation scale, various diseases have become major threats to the industry. Evidence has shown that non-coding RNAs (ncRNAs) have remarkable functions in the interactions between pathogens and their hosts. However, little is known about the mechanisms of circular RNAs (circRNAs) and coding RNAs in the process of preventing pathogen infection in the intestine in teleosts. In this study, we aimed to uncover the global landscape of mRNAs, circRNAs, and microRNAs (miRNAs) in response to Edwardsiella tarda infection at different time points (0, 2, 6, 12, and 24 h) and to construct regulatory networks for exploring the immune regulatory mechanism in the intestine of S. schlegelii. In total, 1,794 mRNAs, 87 circRNAs, and 79 miRNAs were differentially expressed. The differentially expressed RNAs were quantitatively validated using qRT-PCR. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that most of the differentially expressed mRNA genes and the target genes of ncRNAs were related to immune signaling pathways, such as the NF-κB signal pathway, pathogen recognition receptors related to signaling pathways (Toll-like receptors and Nod-like receptors), and the chemokine signaling pathway. Based on these differentially expressed genes, 624 circRNA-miRNA pairs and 2,694 miRNA-mRNA pairs were predicted using the miRanda software. Integrated analyses generated 25 circRNA-miRNA-mRNA interaction networks. In a novel_circ_0004195/novel-530/IκB interaction network, novel_530 was upregulated, while its two targets, novel_circ_0004195 and IκB, were downregulated after E. tarda infection. In addition, two circRNA-miRNA-mRNA networks related to apoptosis (novel_circ_0003210/novel_152/apoptosis-stimulating of p53 protein 1) and interleukin (novel_circ_0001907/novel_127/interleukin-1 receptor type 2) were also identified in our study. We thus speculated that the downstream NF-κB signaling pathway, p53 signaling pathway, and apoptosis pathway might play vital roles in the immune response in the intestine of S. schlegelii. This study revealed a landscape of RNAs in the intestine of S. schlegelii during E. tarda infection and provided clues for further study on the immune mechanisms and signaling networks based on the circRNA-miRNA-mRNA axis in S. schlegelii.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xingbo Bian ◽  
Pengcheng Yu ◽  
Ling Dong ◽  
Yan Zhao ◽  
He Yang ◽  
...  

AbstractGinseng rusty root symptom (GRS) is one of the primary diseases of ginseng. It leads to a severe decline in the quality of ginseng and significantly affects the ginseng industry. The regulatory mechanism of non-coding RNA (ncRNA) remains unclear in the course of disease. This study explored the long ncRNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) in GRS tissues and healthy ginseng (HG) tissues and performed functional enrichment analysis of the screened differentially expressed ncRNAs. Considering the predictive and regulatory effects of ncRNAs on mRNAs, we integrated ncRNA and mRNA data to analyze and construct relevant regulatory networks. A total of 17,645 lncRNAs, 245 circRNAs, and 299 miRNAs were obtained from HG and GRS samples, and the obtained ncRNAs were characterized, including the classification of lncRNAs, length and distribution of circRNA, and the length and family affiliations of miRNAs. In the analysis of differentially expressed ncRNA target genes, we found that lncRNAs may be involved in the homeostatic process of ginseng tissues and that lncRNAs, circRNAs, and miRNAs are involved in fatty acid-related regulation, suggesting that alterations in fatty acid-related pathways may play a key role in GRS. Besides, differentially expressed ncRNAs play an essential role in regulating transcriptional translation processes, primary metabolism such as starch and sucrose, and secondary metabolism such as alkaloids in ginseng tissues. Finally, we integrated the correlations between ncRNAs and mRNAs, constructed corresponding interaction networks, and identified ncRNAs that may play critical roles in GRS. These results provide a basis for revealing GRS's molecular mechanism and enrich our understanding of ncRNAs in ginseng.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3212
Author(s):  
Feng Cheng ◽  
Jing Liang ◽  
Liyu Yang ◽  
Ganqiu Lan ◽  
Lixian Wang ◽  
...  

Intramuscular fat (IMF) content is a complex trait that affects meat quality and determines pork quality. In order to explore the potential mechanisms that affect the intramuscular fat content of pigs, a Large white × Min pigs F2 resource populations were constructed, then whole-transcriptome profile analysis was carried out for five low-IMF and five high-IMF F2 individuals. In total, 218 messenger RNA (mRNAs), 213 long non-coding RNAs (lncRNAs), 18 microRNAs (miRNAs), and 59 circular RNAs (circRNAs) were found to be differentially expressed in the longissimus dorsi muscle. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes annotations revealed that these differentially expressed (DE) genes or potential target genes (PTGs) of DE regulatory RNAs (lncRNAs, miRNAs, and circRNAs) are mainly involved in cell differentiation, fatty acid synthesis, system development, muscle fiber development, and regulating lipid metabolism. In total, 274 PTGs were found to be differentially expressed between low- and high-IMF pigs, which indicated that some DE regulatory RNAs may contribute to the deposition/metabolism of IMF by regulating their PTGs. In addition, we analyzed the quantitative trait loci (QTLs) of DE RNAs co-located in high- and low-IMF groups. A total of 97 DE regulatory RNAs could be found located in the QTLs related to IMF. Co-expression networks among different types of RNA and competing endogenous RNA (ceRNA) regulatory networks were also constructed, and some genes involved in type I diabetes mellitus were found to play an important role in the complex molecular process of intramuscular fat deposition. This study identified and analyzed some differential RNAs, regulatory RNAs, and PTGs related to IMF, and provided new insights into the study of IMF formation at the level of the genome-wide landscape.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 921
Author(s):  
Aleksandra Lipka ◽  
Jan Pawel Jastrzebski ◽  
Lukasz Paukszto ◽  
Karol Gustaw Makowczenko ◽  
Elzbieta Lopienska-Biernat ◽  
...  

Impaired fetal growth is one of the most important causes of prematurity, stillbirth and infant mortality. The pathogenesis of idiopathic fetal growth restriction (FGR) is poorly understood but is thought to be multifactorial and comprise a range of genetic causes. This research aimed to investigate non-coding RNAs (lncRNAs) in the placentas of male and female fetuses affected by FGR. RNA-Seq data were analyzed to detect lncRNAs, their potential target genes and circular RNAs (circRNAs); a differential analysis was also performed. The multilevel bioinformatic analysis enabled the detection of 23,137 placental lncRNAs and 4263 of them were classified as novel. In FGR-affected female fetuses’ placentas (ff-FGR), among 19 transcriptionally active regions (TARs), five differentially expressed lncRNAs (DELs) and 12 differentially expressed protein-coding genes (DEGs) were identified. Within 232 differentially expressed TARs identified in male fetuses (mf-FGR), 33 encompassed novel and 176 known lncRNAs, and 52 DEGs were upregulated, while 180 revealed decreased expression. In ff-FGR ACTA2-AS1, lncRNA expression was significantly correlated with five DEGs, and in mf-FGR, 25 TARs were associated with DELs correlated with 157 unique DEGs. Backsplicing circRNA processes were detected in the range of H19 lncRNA, in both ff- and mf-FGR placentas. The performed global lncRNAs characteristics in terms of fetal sex showed dysregulation of DELs, DEGs and circRNAs that may affect fetus growth and pregnancy outcomes. In female placentas, DELs and DEGs were associated mainly with the vasculature, while in male placentas, disturbed expression predominantly affected immune processes.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 455 ◽  
Author(s):  
Qingyuan Ouyang ◽  
Shenqiang Hu ◽  
Guosong Wang ◽  
Jiwei Hu ◽  
Jiaman Zhang ◽  
...  

To date, research on poultry egg production performance has only been conducted within inter or intra-breed groups, while those combining both inter- and intra-breed groups are lacking. Egg production performance is known to differ markedly between Sichuan white goose (Anser cygnoides) and Landes goose (Anser anser). In order to understand the mechanism of egg production performance in geese, we undertook this study. Here, 18 ovarian stromal samples from both Sichuan white goose and Landes goose at the age of 145 days (3 individuals before egg production initiation for each breed) and 730 days (3 high- and low egg production individuals during non-laying periods for each breed) were collected to reveal the genome-wide expression profiles of ovarian mRNAs and lncRNAs between these two geese breeds at different physiological stages. Briefly, 58, 347, 797, 777, and 881 differentially expressed genes (DEGs) and 56, 24, 154, 105, and 224 differentially expressed long non-coding RNAs (DElncRNAs) were found in LLD vs. HLD (low egg production Landes goose vs. high egg production Landes goose), LSC vs. HSC (low egg production Sichuan White goose vs. high egg production Sichuan white goose), YLD vs. YSC (young Landes goose vs. young Sichuan white goose), HLD vs. HSC (high egg production Landes goose vs. high egg production Sichuan white goose), and LLD vs. LSC (low egg production Landes goose vs. low egg production Sichuan white goose) groups, respectively. Functional enrichment analysis of these DEGs and DElncRNAs suggest that the “neuroactive ligand–receptor interaction pathway” is crucial for egg production, and particularly, members of the 5-hydroxytryptamine receptor (HTR) family affect egg production by regulating ovarian metabolic function. Furthermore, the big differences in the secondary structures among HTR1F and HTR1B, HTR2B, and HTR7 may lead to their different expression patterns in goose ovaries of both inter- and intra-breed groups. These results provide novel insights into the mechanisms regulating poultry egg production performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Rou Shi ◽  
Yingjian Chen ◽  
Yuanjun Liao ◽  
Rang Li ◽  
Chunwen Lin ◽  
...  

Aims. Noncoding RNAs (ncRNAs) play an important role in the occurrence and development of type 2 diabetes mellitus (T2DM). This paper summarized the current evidences of the involvement microRNAs, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in the differential expressions and their interaction with each other in T2DM. Methods. The differentially expressed miRNAs, lncRNAs, and circRNAs in the blood circulation (plasma, serum, whole blood, and peripheral blood mononuclear cells) of patients with T2DM were found in PubMed, GCBI, and other databases. The interactions between ncRNAs were predicted based on the MiRWalk and the DIANA Tools databases. The indirect and direct target genes of lncRNAs and circRNAs were predicted based on the starBase V2.0, DIANA Tools, and LncRNA-Target databases. Then, GO and KEGG analysis on all miRNA, lncRNA, and circRNA target genes was performed using the mirPath and Cluster Profile software package in R language. The lncRNA–miRNA and circRNA–miRNA interaction diagram was constructed with Cytoscape. The aim of this investigation was to construct a mechanism diagram of lncRNA involved in the regulation of target genes on insulin signaling pathways and AGE–RAGE signaling pathways of diabetic complications. Results. A total of 317 RNAs, 283 miRNAs, and 20 lncRNAs and circRNAs were found in the circulation of T2DM. Dysregulated microRNAs and lncRNAs were found to be involved in signals related to metabolic disturbances, insulin signaling, and AGE–RAGE signaling in T2DM. In addition, lncRNAs participate in the regulation of key genes in the insulin signaling and AGE–RAGE signaling pathways through microRNAs, which leads to insulin resistance and diabetic vascular complications. Conclusion. Noncoding RNAs participate in the occurrence and development of type 2 diabetes and lead to its vascular complications by regulating different signaling pathways.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 310 ◽  
Author(s):  
Junying Liu ◽  
Huiyan Fan ◽  
Ying Wang ◽  
Chenggui Han ◽  
Xianbing Wang ◽  
...  

Beet necrotic yellow vein virus (BNYVV) infections induce stunting and leaf curling, as well as root and floral developmental defects and leaf senescence in Nicotiana benthamiana. A microarray analysis with probes capable of detecting 1596 candidate microRNAs (miRNAs) was conducted to investigate differentially expressed miRNAs and their targets upon BNYVV infection of N. benthamiana plants. Eight species-specific miRNAs of N. benthamiana were identified. Comprehensive characterization of the N. benthamiana microRNA profile in response to the BNYVV infection revealed that 129 miRNAs were altered, including four species-specific miRNAs. The targets of the differentially expressed miRNAs were predicted accordingly. The expressions of miR164, 160, and 393 were up-regulated by BNYVV infection, and those of their target genes, NAC21/22, ARF17/18, and TIR, were down-regulated. GRF1, which is a target of miR396, was also down-regulated. Further genetic analysis of GRF1, by Tobacco rattle virus-induced gene silencing, assay confirmed the involvement of GRF1 in the symptom development during BNYVV infection. BNYVV infection also induced the up-regulation of miR168 and miR398. The miR398 was predicted to target umecyanin, and silencing of umecyanin could enhance plant resistance against viruses, suggesting the activation of primary defense response to BNYVV infection in N. benthamiana. These results provide a global profile of miRNA changes induced by BNYVV infection and enhance our understanding of the mechanisms underlying BNYVV pathogenesis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hai Lan Yao ◽  
Mi Liu ◽  
Wen Jun Wang ◽  
Xin Ling Wang ◽  
Juan Song ◽  
...  

AbstractMicroRNAs (miRNAs) play an important role in regulating gene expression in multiple biological processes and diseases. Thus, to understand changes in miRNA during CVB3 infection, specific miRNA expression profiles were investigated at 3 h, 6 h, and 9 h postinfection in HeLa cells by small-RNA high-throughput sequencing. Biological implications of 68 differentially expressed miRNAs were analyzed through GO and KEGG pathways. Interaction networks between 34 known highly differentially expressed miRNAs and targets were constructed by mirDIP and Navigator. The predicted targets showed that FAM135A, IKZF2, PLAG1, ZNF148, PHC3, LCOR and DYRK1A, which are associated with cellular differentiation and transcriptional regulation, were recognized by 8 miRNAs or 9 miRNAs through interactional regulatory networks. Seven target genes were confirmed by RT-qPCR. The results showed that the expression of DYRK1A, FAM135A, PLAG1, ZNF148, and PHC3 were obviously inhibited at 3 h, 6 h, and 9 h postinfection. The expression of LCOR did not show a significant change, and the expression of IKZF2 increased gradually with prolonged infection time. Our findings improve the understanding of the pathogenic mechanism of CVB3 infection on cellular differentiation and development through miRNA regulation, which has implications for interventional approaches to CVB3-infection therapy. Our results also provide a new method for screening target genes of microRNA regulation in virus-infected cells.


2021 ◽  
Author(s):  
Biao Chen ◽  
Wenjie Fang ◽  
Yankai Li ◽  
Ting Xiong ◽  
Mingfang Zhou ◽  
...  

Ducks are an important source of meat and egg products for human beings. In China, duck breeding has gradually changed from the traditional floor-water combination system to multilayer cage breeding. Therefore, the present study collected the hypothalamus and pituitary of 113-day-old ducks after being caged for 3 days, in order to investigate the effect of cage-rearing on the birds. In addition, the same tissues (hypothalamus and pituitary) were collected from ducks raised in the floor-water combination system, for comparison. Thereafter, the transcriptomes were sequenced and the expression level of genes were compared. The results of sequencing analysis showed that a total of 506 and 342 genes were differentially expressed in the hy-po-thalamus and pituitary, respectively. Additionally, the differentially expressed genes were mainly enriched in signaling pathways involved in processing environmental information, including ECM-receptor interaction, neuroactive ligand-receptor interaction and focal adhesion. The findings also showed that there was a change in the alternative splicing of genes when ducks were transferred into the cage rearing system. However, there was no difference in the expression of some genes although there was a change in the expression of the isoforms of these genes. The findings herein can therefore help in understanding the mechanisms underlying the effect of caging on waterfowl. The results also highlight the gene regulatory networks involved in animal responses to acute stress.


2020 ◽  
Author(s):  
Fangwei Li ◽  
Hong Wang ◽  
Hongyan Tao ◽  
Fanqi Wu ◽  
Dan Wang ◽  
...  

Abstract Background: Recent studies have found a regulatory role of circular RNAs (circRNAs) in the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, the function and underlying molecular mechanism of circRNAs involved in IPF are uncertain and incomplete. This study aimed to further provide some critical information for the circRNA function in IPF using bioinformatic analysis. Methods: We searched in the NCBI (National Center for Biotechnology Information) Gene Expression Omnibus (GEO) database to find the circRNA expression profiles of human IPF. The microarray data GSE102660 was obtained and differentially expressed circRNAs were identified through R software. Results: 6 significantly up-regulated and 13 significantly down-regulated circRNAs were identified involved in the pathogenesis of IPF. The binding sites of miRNAs for each differentially expressed circRNA were also predicted and circRNA-miRNA-mRNA networks were constructed for the most up-regulated hsa_circ_0004099 and down-regulated hsa_circ_0029633. In addition, GO and KEGG enrichment analysis revealed the molecular function and enriched pathways of the target genes of circRNAs in IPF.Conclusion: These findings suggest that candidate circRNAs might serve an important role in the pathogenesis of IPF. Therefore, these circRNAs might be potential biomarkers for diagnosis and promising targets for treatment of IPF, which still need further verification in vivo and in vitro.


Sign in / Sign up

Export Citation Format

Share Document