scholarly journals SPH-FEM Design of Laminated Plies under Bird-Strike Impact

Aerospace ◽  
2019 ◽  
Vol 6 (10) ◽  
pp. 112 ◽  
Author(s):  
Yadong Zhou ◽  
Youchao Sun ◽  
Tianlin Huang

Composite laminates can potentially reduce the weight of aircrafts; however, they are subjected to bird strike hazards in civil aviation. To handle their nonlinear dynamic behaviour, in this study, the impact damage of composite laminates were numerically evaluated and designed by means of smoothed particle hydrodynamics (SPH) and the finite element method (FEM) to simulate the interaction between bird projectiles and the laminates. Attention was mainly focused on the different damage modes in various laminates’ plies induced by bird impact on a square laminated plate. A continuum damage mechanics approach was exploited to simulate damage initiation and evolution in composite laminates. Damage maps were computed with respect to different ply angles, i.e., 0°, 45° and −45°. The damage distributions were comparatively investigated, and then the ply design was considered for crashworthiness improvement. The results aim to serve as a design guideline for future prototype-scale bird strike studies of complex laminated structures.

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1292 ◽  
Author(s):  
Yadong Zhou ◽  
Youchao Sun ◽  
Tianlin Huang

In spite of potential advantages for aircraft structures, composite laminates can be subjected to bird-strike hazard in civil aviation. For purpose of future surrogate experiments, in this study, impact-damage equivalency for twisted composite blades is numerically investigated by Smoothed Particle Hydrodynamics (SPH) and finite element method (FEM). Cantilever slender flat plates are usually used for basic impact tests, the impact-damage equivalency is being considered by comparing damage modes and energies of three impact configurations: (1) twisted blade; (2) flat blade (axisymmetric); and (3) inclined flat blade (centrosymmetric). The damage maps and energy variations were comparatively investigated. Results indicate that both symmetrical flat and inclined flat blades can be, to a certain extent, regarded as alternatives for real twisted blades under bird impact; however, both types of blade have their own merits and drawbacks, and hence should be used carefully. These results aim to serve as tentative design guideline for future prototype or model experimental study of laminated blades in real aeronautical structures.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 129 ◽  
Author(s):  
Yadong Zhou ◽  
Youchao Sun ◽  
Tianlin Huang

To obtain some basic laws for bird-strike resistance of composite materials in aeronautical application, the high-velocity impact behaviors of composite laminates with different materials were studied by numerical methods. The smoothed particle hydrodynamics (SPH) and finite element method (FEM) coupling models were validated from various perspectives, and the numerical results were comparatively investigated. Results show that the different composite materials have relatively little effect on projectile deformations during the bird impact. However, the impact-damage distributions can be significantly different for different composite materials. The strength parameters and fracture energy parameters play different roles in different damage modes. Lastly, modal frequency was tentatively used to explain the damage behavior of the composite laminates, for it can manifest the mass and stiffness characteristics of a dynamic structure. The dynamic properties and strength properties jointly determine the impact-damage resistance of composite laminates under bird strike. Future optimization study can be considered from these two aspects.


2014 ◽  
Vol 566 ◽  
pp. 463-467
Author(s):  
Pu Xue ◽  
H.H. Chen ◽  
W. Guo

This paper studies the impact damage under low velocity impact for composite laminates based on a nonlinear progressive damage model. Damage evolution is described by the framework of the continuum damage mechanics. The real impact damage status of composite laminates has been used to analyze the residual compressive strength instead of assumptions on damage area after impact. The validity of the methodologies has been demonstrated by comparing the numerical results with the experimental data available in literature. The delamination area has an error of 11.3%. The errors of residual strength and compressive displacement are 8.9% and 15%, which indicate that the numerical results matched well with the experimental data.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Mubarak Ali ◽  
S. C. Joshi ◽  
Mohamed Thariq Hameed Sultan

Fibre reinforced polymer laminated composites are susceptible to impact damage during manufacture, normal operation, maintenance, and/or other stages of their life cycle. Initiation and growth of such damage lead to dramatic loss in the structural integrity and strength of laminates. This damage is generally difficult to detect and repair. This makes it important to find a preventive solution. There has been abundance of research dealing with the impact damage evolution of composite laminates and methods to mitigate and alleviate the damage initiation and growth. This article presents a comprehensive review of different strategies dealing with development of new composite materials investigated by several research groups that can be used to mitigate the low velocity impact damage in laminated composites. Hybrid composites, composites with tough thermoplastic resins, modified matrices, surface modification of fibres, translaminar reinforcements, and interlaminar modifications such as interleaving, short fibre reinforcement, and particle based interlayer are discussed in this article. A critical evaluation of various techniques capable of enhancing impact performance of laminated composites and future directions in this research field are presented in this article.


2017 ◽  
Vol 121 (1238) ◽  
pp. 515-532 ◽  
Author(s):  
N. Li ◽  
P.H. Chen ◽  
Q. Ye

ABSTRACTA method was developed to predict numerically the damage of composite laminates with multiple plies under low-velocity impact loading. The Puck criterion for 3D stress states was adopted to model the intralaminar damage including matrix cracking and fibre breakage, and to obtain the orientation of the fracture plane due to matrix failure. According to interlaminar delamination mechanism, a new delamination criterion was proposed. The influence of transverse and through-thickness normal stress, interlaminar shear stress and damage conditions of adjacent plies on delamination was considered. In order to predict the impact-induced damage of composite laminates with more plies quickly and efficiently, an approach, which can predict the specific damage of several plies in a single solid element, was proposed by interpolation on the strains of element integration points. Moreover, the proposed model can predict specific failure modes. A good agreement between the predicted delamination shapes and sizes and the experimental results shows correctness of the developed numerical method for predicting low-velocity impact damage on composite laminates.


2017 ◽  
Vol 36 (20) ◽  
pp. 1473-1486 ◽  
Author(s):  
Song Zhou ◽  
Yi Sun ◽  
Boyang Chen ◽  
Tong-Earn Tay

The sizes effects on the strengths of open-hole fibre-reinforced composite laminates subjected to tensile loading (OHT) have been investigated widely. However, little attention has been paid to the influence of material orthotropy. This paper presents a progressive damage model for the model failure of notched laminates under tensile loading based on continuum damage mechanics and cohesive elements. The effects of orthotropy on the failure of notched laminates with seven different ply sequences are investigated by our proposed model. The prediction results adopting the Hoffman and Pinho failure criterions to determine matrix damage initiation are compared with the results of experiments. Our proposed models are able to predict the strong influence of orthotropy on strengths of open-hole laminate under tension, and model using Pinho criterion can predict the open-hole tension strength most accurately.


2015 ◽  
Vol 813 ◽  
pp. 19-27 ◽  
Author(s):  
Ang Qiu ◽  
Cheng Bi Zhao ◽  
You Hong Tang ◽  
Wei Lin

There are challenges of using composite laminates in the marine engineering, i.e., composites are frequently suffering from the effects of impaction including wave impaction, ship or other objects hitting, missiles or bullets hitting and other especially conditions. It is significant to understand the impact behaviors of laminates, in this research, the impact responses of typical laminates are investigated numerically. The delamination responses among the plies and fibre and/or matrix damage responses within the plies are simulated to understand the impaction behaviours of laminates under impaction conditions. The impact damage of composite laminates in the form of intra-and/or inter-laminar cracking is modelled by using stress-based criteria for damage initiation, and fracture mechanics technique is used to capture its evolution. Interface cohesive elements are inserted between plies with appropriate mixed-mode damage laws to predict the delamination. A group of graphite fibre/epoxy laminates with impact energies of 5, 10, 15 and 20 J, respectively, are simulated with a full scale FE model and a simplified FE model respectively. Through comparing the simulation results with each other, we find out that the impact behaviors obtained in the simplified FE model is comparable to experiments with a short computing time, but the simplified model cannot represent the properties of laminate after impact.


2021 ◽  
Vol 5 (7) ◽  
pp. 171
Author(s):  
Youchao Sun ◽  
Yuemei Zhang ◽  
Yadong Zhou ◽  
Haitao Zhang ◽  
Haijun Zeng ◽  
...  

Bird-strike failure of fan blades is one of the basic challenges for the safety of aircraft engines. Simplified flat blade-like plates are always used for damage mechanism study of composite laminates. One undesirable issue is the failure at the root of clamped flat plates under high-velocity impact. For this purpose, two different strategies were exploited to obtain desirable impact damage distributions, namely the impact location and the boundary condition. Numerical models of the simplified flat blade-like plate and the bird projectile were constructed by using finite element method (FEM) and smoothed particle hydrodynamics (SPH) approaches. The impact damage distributions were comparatively investigated in detail. The numerical results show that changing the boundary condition is the most effective way to obtain preferable impact damages for further failure analysis of real fan blades. Present results will be useful to the future surrogate experimental design of simplified bird-strike testing.


2018 ◽  
Vol 774 ◽  
pp. 155-160 ◽  
Author(s):  
Juan S.B. León ◽  
Octavio Andrés González-Estrada ◽  
Alberto Pertuz

In this work, we present a model for the initiation and evolution of damage for a composite fibre-reinforced pipe used in the Oil & Gas industry, based on a commercially available pipe. A continuum damage mechanics model was employed to determine the initiation and evolution of damage. This model was implemented using finite element analysis to investigate the performance of the commercial composite pipe. Initially, the material properties were obtained from experimental data and fitting with static structural simulations. Then, FE simulations with damage were performed, considering three different boundary conditions: open, closed (pressure-vessel type) and fixed ends, the load considered was internal pressure. Results showed differences not only in the stress distribution but on the damage initiation and evolution along the geometry of the pipe. These differences in the damage initiation and propagation can be explained as the result of different axial-hoop stress ratio.


2018 ◽  
Vol 27 (3) ◽  
pp. 096369351802700
Author(s):  
Sun Xiao-Yu ◽  
Teng Jian-Xin ◽  
He Zheng ◽  
Gu Xuan

With most studies concentrated on the single point isolated impact events, this work mainly investigates the failure mechanisms of composite laminates simultaneously impacted by two projectiles over low energies. A 3D intralaminar damage model combining continuum damage mechanics to analyze the in-ply damage and cohesive interface elements to simulate the delamination are applied to model the damage evolution of E-glass/epoxy composites simultaneously impacted by two projectiles. The damage model is incorporated into the Abaqus/Explicit by the subroutine VUMAT. A comparison between the simulated predictions and the experimental observations of laminates impacted by one projectile is made to verify the reasonability of the damage model applied. The simulation results indicate that the delamination initiation is not largely affected by the impact energy and the number of the projectiles. As the combined effects of the two projectiles on the laminate, the intersection of matrix damage areas in plies and the connection of delamination regions at interfaces, largely decrease the overall stiffness of the laminate and result in more serious damage.


Sign in / Sign up

Export Citation Format

Share Document