scholarly journals Effects of Soft Rock and Biochar Applications on Millet (Setaria italica L.) Crop Performance in Sandy Soil

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 669
Author(s):  
Yingying Sun ◽  
Ningning Zhang ◽  
Jiakun Yan ◽  
Suiqi Zhang

In arid and semi-arid regions, desertification threatens crop production because it reduces the soil’s capacity to retain water and soil nutrients. At two fertilizer levels (90 kg N hm−2 and 45 kg P hm−2 and 270 kg N hm−2 and 135 kg P hm−2), the effects of soft rock (sand: soft rocks = 3:1) and biochar (4500 kg hm−2) applications on soil moisture, soil nutrients, and millet (Setaria italica L.) photosynthesis, yield, and its agronomic traits (biomass, thousand kernel weight, harvest index) were investigated in a field experiment in the Mu Us Sandy Land of China in 2018–2019. The addition of biochar and soft rock singly increased soil water content, alkali-hydrolyzed nitrogen (AN), total nitrogen (TN) and phosphorus (TP), and organic matter content significantly, suggesting that their application may increase the nutrient and water holding capacity of soil. Application of biochar and soft rock singly increased the net photosynthesis rate of millet flag leaf, at the flowering stage, from 15.97% to 56.26%. Biochar and soft rock application increased the yield range (2109.0 kg hm−2 to 5024.7 kg hm−2) from 5.26% to 54.60% under the same fertilizer level. Correlation analyses showed grain yield was significantly correlated with photosynthesis rate at the flowering stage, which was significantly correlated with soil AN at flowering, soil TP at flowering and harvest, and soil TN at flowering. These results indicated that the application of biochar and soft rock singly could increase soil fertilizer holding capacity to improve the photosynthesis rate at flowering, and, therefore, lead to improvements in crop yield.

2013 ◽  
Vol 2 ◽  
pp. 133-138 ◽  
Author(s):  
RB Amgai ◽  
S Pantha ◽  
TB Chhetri ◽  
SK Budhathoki ◽  
SP Khatiwada ◽  
...  

Foxtail millet (Setaria italica (L) P Beauv) falls on the category of underutilized crops in Nepal and mainly cultivated in Karnali region of the country. It is hardy crop and considered as one of the potential crops for future food security with respect to climate change. Five accessions of Nepalese foxtail millet were purposefully selected for evaluation of the agro-morphological characteristics. Foxtail landraces from Dolpa, Mugu, Bajura, Bajhang and Lamjung districts of Nepal were evaluated at Khumaltar, Lalitpur, Nepal during 2010. The plot size was 1m2 and there were five samples. Days to heading and days to maturity varied from 33-56 and 59 to 87 days after germination respectively. Similarly, flag leaf length/breadth ratio, flag leaf sheath length, ligule length, peduncle length, peduncle exertion and plant height varied from 3.84-10.90, 5.47-9.84 cm, 0.1-0.2 mm, 10-22.57 cm, 2.7-13.58 cm and 41.67-120 cm, respectively. Fruit and apiculus color varied from straw to black. All accessions were actively growing with very slight lodging. Similarly, the thousand grain weight varies from 1.064 g to 2.172 g. This variation is useful in foxtail millet breeding program. Similarly, the significant correlation between thousand kernel weight and total basal tiller (r=-0.975) showed that foxtail millet lines with low tillering ability is better for yield enhancement. DOI: http://dx.doi.org/10.3126/ajn.v2i0.7528 Agronomy Journal of Nepal (Agron JN) Vol. 2: 2011 pp.133-138


2015 ◽  
Vol 66 (8) ◽  
pp. 770 ◽  
Author(s):  
Omid Ali Akbarpour ◽  
Hamid Dehghani ◽  
Mohammad Javad Rousta

Salinity is one of the most serious problems of crop production worldwide. In this research, a set of different wheat landraces with high diversity collected throughout Iran, advanced lines in breeding programs, and some well-known tolerant and sensitive cultivars were used to estimate genetic parameters of agronomic traits by using the restricted maximum likelihood (REML) approach. The results showed that several genotypes such as BUMI8, Salt18, BUMI1, Check cultivar and Salt25 had no reduction in grain yield under saline conditions compared with normal conditions. Minimum reductions in grain yield were related to BUMI6, Roshan and Shahpasand genotypes. High broad-sense heritability for most traits showed that they could be used to select and improve the salt tolerance of wheat germplasm in breeding programs. Grain yield had high broad-sense heritability under normal (H2b = 0.61) and saline (H2b = 0.55) conditions. Traits related to height and number of spikes per plant showed a positive correlation with grain yield. Time to heading and to maturity showed negative correlation with grain yield. Number of kernels per spike, kernel weight per spike, number of spikes per plant and spike weight showed positive correlations with grain yield under saline conditions. A significantly negative correlation was also seen between grain yield and days to heading or days to maturity under saline conditions. High variation and moderate to high heritabilities of yield and yield components in normal and salt-stressed field conditions for Iranian bread wheat germplasm are promising to enhance the narrow genetic pool of salinity tolerance.


1970 ◽  
pp. 33-36
Author(s):  
Faizan Mahmood, Hidayat- Ur-Rahman, Nazir Ahmad ◽  
Fahim-ul- Haq ◽  
Samrin Gul, Quaid Hussain ◽  
Ammara Khalid ◽  
Touheed Iqbal ◽  
...  

This study evaluated the performance of 64 half sib families (HSF) derived from “Azam” variety of maize using partially balanced lattice square design with two replications. Data were recorded on grain yield and other agronomic traits. Observations showed difference in half-sib families for studied traits. Among the 64 half-sib families, minimum days to 50% tasseling (51 days) were observed for HS-49 while maximum (57 days) for HS-63. Minimum days to 50% silking (56 days) were counted for HS-6 while maximum (63 days) for HS-23. Minimum days to 50% anthesis (55 days) were counted for HS-1 and HS-6 while maximum (62 days) for HS-23. Similarly, minimum ASI (-2 days) were observed in HS-1, HS-15, HS-16, HS-28 and HS-63 while maximum (2 days) in HS-48. Minimum (60 cm) ear height was recorded for HS-11 and maximum (93.5 cm) for HS-28. Minimum fresh ear weight (1.3 kg) was weighted for HS-17 while maximum (3.2 kg) for HS-21. Grain moisture was recorded minimum (19.35 %) for HS-19 and maximum (31.25%) for HS-2. HS-42 showed minimum (28 g) 100 kernel weight while HS-5 showed maximum (47 g). Grain yield was minimum (2323 kg ha-1) for HS-17 and maximum (5742 kg ha-1) for HS-21. Maximum heritability estimate (0.92) was recorded for fresh ear weight, while minimum (0.41) was observed for ear height.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1295
Author(s):  
Ahossi Patrice Koua ◽  
Mirza Majid Baig ◽  
Benedict Chijioke Oyiga ◽  
Jens Léon ◽  
Agim Ballvora

Nitrogen (N) is a vital component of crop production. Wheat yield varies significantly under different soil available N. Knowing how wheat responds to or interacts with N to produce grains is essential in the selection of N use efficient cultivars. We assessed in this study variations among wheat genotypes for productivity-related traits under three cropping systems (CS), high-nitrogen with fungicide (HN-WF), high-nitrogen without fungicide (HN-NF) and low-nitrogen without fungicide (LN-NF) in the 2015, 2016 and 2017 seasons. ANOVA results showed genotypes, CS, and their interactions significantly affected agronomic traits. Grain yield (GY) increased with higher leaf chlorophyll content, importantly under CS without N and fungicide supply. Yellow rust disease reduced the GY by 20% and 28% in 2015 and 2016, respectively. Moreover, averaged over growing seasons, GY was increased by 23.78% under CS with N supply, while it was greatly increased, by 52.84%, under CS with both N and fungicide application, indicating a synergistic effect of N and fungicide on GY. Fungicide supply greatly improved the crop ability to accumulate N during grain filling, and hence the grain protein content. Recently released cultivars outperformed the older ones in most agronomic traits including GY. Genotype performance and stability analysis for GY production showed differences in their stability levels under the three CS. The synergistic effect of nitrogen and fungicide on grain yield (GY) and the differences in yield stability levels of recently released wheat cultivars across three CS found in this study suggest that resource use efficiency can be improved via cultivar selection for targeted CS.


2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marziyeh Khavari ◽  
Reza Fatahi ◽  
Zabihollah Zamani

AbstractClimate change and population increase are two challenges for crop production in the world. Hazelnut (Corylus avellana L.) is considered an important nut regarding its nutritional and economic values. As a fact, the application of supporting materials as foliage sprays on plants will decrease biotic and abiotic stresses. In this study, the effects of salicylic acid (0, 1 mM and 2.5 mM) and kaolin (0, 3% and 6%) sprays were investigated on morphological, physiological, pomological, and biochemical characteristics of hazelnut. The results showed that 1 mM salicylic acid and 6% kaolin had the best effects on nut and kernel weight compared to control. Biochemical parameters such as chlorophyll a, b, a + b, and carotenoid contents showed that salicylic acid and kaolin improved pigment concentration. Proline and antioxidant contents such as phenolic acids, SOD, APX, and CAT enzyme activities increased by these applications. On the other hand, lipid peroxidation, protein content, and H2O2 content were decreased. Based on the tolerance index result, Merveille de Bollwiller cultivar showed the highest tolerance while 'Fertile de Coutard' had the lowest value. Therefore, hazelnut performance may be improved through exogenous application of the signaling (salicylic acid) and particle film (Kaolin) compounds in warmer climates.


2021 ◽  
Vol 22 (4) ◽  
pp. 2053
Author(s):  
Judit Bányai ◽  
Marco Maccaferri ◽  
László Láng ◽  
Marianna Mayer ◽  
Viola Tóth ◽  
...  

A detailed study was made of changes in the plant development, morphology, physiology and yield biology of near-isogenic lines of spring durum wheat sown in the field with different plant densities in two consecutive years (2013–2014). An analysis was made of the drought tolerance of isogenic lines selected for yield QTLs (QYld.idw-2B and QYld.idw-3B), and the presence of QTL effects was examined in spring sowings. Comparisons were made of the traits of the isogenic pairs QYld.idw-3B++ and QYld.idw-3B−− both within and between the pairs. Changes in the polyamine content, antioxidant enzyme activity, chlorophyll content of the flag leaf and the normalized difference vegetation index (NDVI) of the plot were monitored in response to drought stress, and the relationship between these components and the yield was analyzed. In the case of moderate stress, differences between the NIL++ and NIL−− pairs appeared in the early dough stage, indicating that the QYld.idw-3B++ QTL region was able to maintain photosynthetic activity for a longer period, resulting in greater grain number and grain weight at the end of the growing period. The chlorophyll content of the flag leaf in phenophases Z77 and Z83 was significantly correlated with the grain number and grain weight of the main spike. The grain yield was greatly influenced by the treatment, while the genotype had a significant effect on the thousand-kernel weight and on the grain number and grain weight of the main spike. When the lines were compared in the non-irrigated treatment, significantly more grains and significantly higher grain weight were observed in the main spike in NIL++ lines, confirming the theory that the higher yields of the QYld.idw-3B++ lines when sown in spring and exposed to drought stress could be attributed to the positive effect of the “Kofa” QTL on chromosome 3B.


1995 ◽  
Vol 75 (3) ◽  
pp. 557-563 ◽  
Author(s):  
H. Z. Cross

Grain quality, timeliness of harvest, and profitability can be increased by improving field drying characteristics of maize (Zea mays L.) hybrids. To better understand hows genes control ear drying, I compared maize strains developed by divergently selecting three cycles for (1) high HM or low LM moisture content at 45 d post pollination in the field or (2) fast FD vs. slow ear drying SD In laboratory. A field study across five locations compared HM, LM, FD, and SD strains from each of five synthetics for grain yield, ear moisture at harvest, test weight, lodging, and other agronomic traits. I studied ear moisture during grain filling for two subsets of divergently selected strains from one and three synthetics for 2 yr. In a third 2-yr field study, I measured mature kernel weight, lag period duration (LPD), effective grain-filling period (EFPD), and rate of dry matter accumulation (RDMA) for LM and HM strains developed from each of four synthetics. When averaged across the five synthetics, both SD and LM selections produced equivalent yields but lower ear moisture at harvest than the corresponding divergent strains. The LM strains had higher test weights than HM strains. When averaged across three synthetics and 2 yr, the HM strains produced higher moisture than LM strains at 15, 30, 45, and 60 d after silking. However, environments also influenced moisture content of the kernels during grain filling. In three of the four synthetics studied, HM strains had heavier kernels than corresponding LM strains. The heavier kernels seem to be due to increased RDMA. When averaged across four synthetics, LM strains had shorter LPD than HM strains. These correlated selection responses suggest that a genetic association exists among moisture content during grain filling, moisture content at physiological maturity, moisture content at harvest, LPD, and test weight. Breeding for LM or SD should improve field-drying characteristics of maize without increasing stalk breakage or decreasing yields. Key words:Zea mays L., grain filling, dry-down rates, mass selection, breeding methods


2002 ◽  
Vol 82 (3) ◽  
pp. 507-512 ◽  
Author(s):  
H. Wang ◽  
M. R. Fernandez ◽  
F. R. Clarke ◽  
R. M. DePauw ◽  
J. M. Clarke

Although leaf spotting diseases have been reported to have a negative effect on grain yield and seed characteristics of wheat (Triticum spp.), the magnitude of such effects on wheat grown on dryland in southern Saskatchewan is not known. A fungicide experiment was conducted at Swift Current (Brown soil) and Indian Head (Black soil) from 1997 to 1999 to determine the effect of leaf spotting diseases on yield and seed traits of wheat. Two fungicides, Folicur 3.6F and Bravo 500, were applied at different growth stages on three common wheat (Triticum aestivum L.) and three durum wheat (T. turgidum L. var durum) genotypes. Fungicide treatments generally did not affect yield, kernel weight, test weight or grain protein concentration, and these effects were relatively consistent among genotypes. Folicur applied at head emergence in 1997 and at flag leaf emergence and/or head emergence in 1998 increased yield at Indian Head (P < 0.05). Fungicides applied at and before flag leaf emergence tended to increase kernel weight. Grain protein concentration increased only in treatments of Bravo applications at Indian Head in 1998. These results suggested that under the dryland environment and management in southern Saskatchewan leaf spotting diseases generally have a small effect on yield, kernel weight, test weight and protein concentration. Key words: Wheat, leaf spotting diseases, fungicide, yield


1950 ◽  
Vol 28c (5) ◽  
pp. 493-512 ◽  
Author(s):  
W. E. Sackston

The pasmo pathogen sporulated freely on potato dextrose agar containing yeast extract. Spores suspended in water with gelatin as a spreader–sticker were sprayed onto flax plants at different stages of growth in field plots. Heaviest infections of pasmo resulted from inoculations at the flowering stage, lighter infections from inoculations on seedlings, and lightest infections from inoculations on ripening plants. Diluting the concentration of spores in the inoculum reduced disease intensity. The four flax varieties in the tests differed in reaction to pasmo. In decreasing order of susceptibility they were: Viking, Redwing, Royal, and Crystal. Heavy infections of pasmo caused premature ripening and reduced the seed yield and weight per thousand kernels of all four varieties. The effects of pasmo infection on seed yield and kernel weight were similar to those caused by a hot, dry climate, and by flax rust. Seed yield and kernel weight were reduced most markedly by inoculation at the flowering stage, less severely by inoculation at the seedling stage, and least of all by inoculation at the time of ripening. Seed yield and kernel weight from plots inoculated when the plants were ripening did not differ significantly from the uninoculated checks. Highly significant positive correlations between the data for seed yield and kernel weight indicated that much of the loss in yield resulted from a reduction in the size of individual seeds.


Sign in / Sign up

Export Citation Format

Share Document