scholarly journals Potentially Toxic Element Availability and Risk Assessment of Cadmium Dietary Exposure after Repeated Croppings of Brassica juncea in a Contaminated Agricultural Soil

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 880 ◽  
Author(s):  
Diana Agrelli ◽  
Luigi Giuseppe Duri ◽  
Nunzio Fiorentino ◽  
Eugenio Cozzolino ◽  
Massimo Fagnano ◽  
...  

Phytoextraction of potentially toxic elements (PTEs) is eco-friendly and cost-effective for remediating agricultural contaminated soils, but plants can only take up bioavailable forms of PTEs, thus meaning that bioavailability is the key for the feasibility of this technique. With the aims to assess the phytoextraction efficiency on an agricultural soil contaminated by Cr, Zn, Cd, and Pb and the changes induced by plants in PTE bioavailability and in human health risk due to dietary exposure, in this work we carried out a mesocosm experiment with three successive croppings of Brassica juncea, each followed by Rocket salad as bioindicator. Brassica juncea extracted more Zn and Cd than Cr and Pb, significantly reducing, after three repeated croppings, the bioavailable element concentrations in soil as a result of plant uptake and soil pH changes. For Cd, this reduction did not bring the bioavailable amounts obtained by soil extraction with NH4NO3 below the trigger value of 0.1 mg kg−1 set by some European countries. Nevertheless, the Hazard Quotient for Cd in Rocket salad decreased across three repeated croppings of Brassica juncea. This indicated the beginning of a re-equilibration process between soil PTE forms of different bioavailability, that are in a dynamic equilibrium, thus stressing the need to monitor the possible regeneration of the most readily bioavailable pool.

Author(s):  
MA Mahmud ◽  
M Hassan ◽  
R Hassan ◽  
R Mandal ◽  
MK Rahman

Heavy metal like Cadmium (Cd) is a common pollutant present in the soils of urban and industrial areas. Vegetables are preferably grown in these soils than other crops. Of the vegetables, Chinese cabbage (Brassica campestris var. pekinensis) is gaining its popularity among farmers for its high market value. Therefore, an experiment was conducted where cabbage was grown on Cd treated soil. Bioaccumulation of Cd in Chinese cabbage was determined and Target Hazard Quotient (THQ) model was used to assess potential health risk of human. Results showed that with increasing concentration of added Cd (0.00 to 4.00 ppm) in soil, bio-concentration factors of Cd of Chinese cabbage also increased except at 4 ppm. The chinese cabbage grown in Cd contaminated soils up-to 1.00 ppm might be safe. However, cabbage grown in the soils contaminated with Cd above this level would probably be risky and may cause serious health hazard to human body.J. Biodivers. Conserv. Bioresour. Manag. 2017, 3(1): 1-8


2014 ◽  
Vol 3 (2) ◽  
pp. 229-237 ◽  
Author(s):  
Rajeev Kumar Bhadkariya ◽  
VK Jain ◽  
GPS Chak ◽  
SK Gupta

Cadmium is a toxic metal for living organisms and an environmental contaminant. Soils in many parts of the world are slightly too moderately contaminated by Cd due to long term use and disposal of Cd-contaminated wastes. Cost effective technologies are needed to remove cadmium from the contaminated sites. Soil phytoextraction is engineering based, low cost and socially accepted developing technology that uses plants to clean up contaminants in soils. This technology can be adopted as a remediation of cadmium from Cd-contaminated soils with the help of Brassica juncea plant. The objective of this work was to evaluate the cadmium (Cd) accumulate and the tolerance of Brassica juncea. The Cd accumulates in all parts of plants (roots, stems and leaves). It was found that accumulating efficiency increased with the increase in the concentration of applied cadmium metal solution. Maximum accumulation of cadmium was found in roots than stem and leaves. Phytoextraction coefficient and translocation factor were highest to show the validity of the Brassica juncea species for hyperaccumulation of the Cd metal. These results suggested that Brassica juncea has a high ability to tolerate and accumulate Cd, so it might be a promising plant to be used for phytoextraction of Cd contaminated soil. DOI: http://dx.doi.org/10.3126/ije.v3i2.10533 International Journal of the Environment Vol.3(2) 2014: 229-237


Author(s):  
Nikolay S. Shulaev ◽  
◽  
Valeriya V. Pryanichnikova ◽  
Ramil R. Kadyrov ◽  
Inna V. Ovsyannikova ◽  
...  

The most essential scientifific and practical task in the area of ecological safety of pipelines operation is the development and improvement of methods of purifification and restoration of oil-contaminated soils. One of the most effificient and cost effective methods is electrochemical purifification, that does not require the use of expensive chemical reagents and soil excavation. However, the consideration of non-uniform contamination of various soil sections is required. The article examines the features of the organization and technological infrastructure for electrochemical purifification of non-uniformly contaminated soils when using a single electrical energy source, a method for calculating the design parameters of the corresponding installation is proposed. Effificient purifification of non-uniformly contaminated soil when using a specifified voltage is possible through the use of different-sized electrodes. For each soil type, the amount of transmitted electric charge required for soil purifification is determined by the concentration of the contaminant. Allocation of cathodes and anodes as parallel batteries and their connection using individual buses is an effective and energy-effificient solution, since an almost-uniform electric fifield is created in an inter-electrode space, thus allowing the reduction of the interelectrode resistance of the medium.


Chemosphere ◽  
2017 ◽  
Vol 177 ◽  
pp. 211-216 ◽  
Author(s):  
Qianqian Zhang ◽  
Zhonghuan Xia ◽  
Minmin Wu ◽  
Liping Wang ◽  
Hao Yang

2021 ◽  
Vol 11 (9) ◽  
pp. 4160
Author(s):  
Farheen Nazli ◽  
Xiukang Wang ◽  
Maqshoof Ahmad ◽  
Azhar Hussain ◽  
Bushra ◽  
...  

Untreated wastewater used for irrigating crops is the major source of toxic heavy metals and other pollutants in soils. These heavy metals affect plant growth and deteriorate the quality of edible parts of growing plants. Phytohormone (IAA) and exopolysaccharides (EPS) producing plant growth-promoting rhizobacteria can reduce the toxicity of metals by stabilizing them in soil. The present experiment was conducted to evaluate the IAA and EPS-producing rhizobacterial strains for improving growth, physiology, and antioxidant activity of Brassica juncea (L.) under Cd-stress. Results showed that Cd-stress significantly decreased the growth and physiological parameters of mustard plants. Inoculation with Cd-tolerant, IAA and EPS-producing rhizobacterial strains, however, significantly retrieved the inhibitory effects of Cd-stress on mustard growth, and physiology by up regulating antioxidant enzyme activities. Higher Cd accumulation and proline content was observed in the roots and shoot tissues upon Cd-stress in mustard plants while reduced proline and Cd accumulation was recorded upon rhizobacterial strains inoculation. Maximum decrease in proline contents (12.4%) and Cd concentration in root (26.9%) and shoot (29%) in comparison to control plants was observed due to inoculation with Bacillus safensis strain FN13. The activity of antioxidant enzymes was increased due to Cd-stress; however, the inoculation with Cd-tolerant, IAA-producing rhizobacterial strains showed a non-significant impact in the case of the activity of superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) in Brassica juncea (L.) plants under Cd-stress. Overall, Bacillus safensis strain FN13 was the most effective strain in improving the Brassica juncea (L.) growth and physiology under Cd-stress. It can be concluded, as the strain FN13 is a potential phytostabilizing biofertilizer for heavy metal contaminated soils, that it can be recommended to induce Cd-stress tolerance in crop plants.


2020 ◽  
Vol 12 (9) ◽  
pp. 3575
Author(s):  
Thor Kolath ◽  
Lotte Reuss ◽  
Sara Egemose ◽  
Kasper Reitzel

New lakes are established or reestablished to provide ecosystem services such as limiting floods and nutrient discharge and to improve biodiversity. New lakes are often established on fertilized land formerly used for agricultural purposes, thereby posing a risk of issues such as phosphorus (P) release when inundated. Release of P from agricultural soil affects both the developing ecosystem of the new lake and may increase downstream eutrophication. To decrease P release following inundation, three simple and cost-effective soil pretreatments were tested through laboratory soil–water fluxes from the test sites in the new Lake Roennebaek and the fluxes of P, nitrogen (N), and iron (Fe) were compared. The pretreatments compared were sand-capping, depth-plowing, and addition of the commercial iron product CFH-12® (Kemira). Untreated agricultural soil incubated under laboratory conditions released 687 ± 88 mg P·m−2 over 207 days and 85% was released within 60 days from inundation followed by low soil–water P exchange during the remaining incubation period. However, P was still released from the untreated soil 180 days after inundation within the lake. The cumulated P flux of the three pretreatment methods was in comparison negative, between −12 ± 3 and −17 ± 4 mg P·m−2 over 207 days incubation and showed negative P fluxes from cores collected within the lake 180 days after inundation. This study showed that the release of P when establishing new lakes on former agricultural land could be minimized using these simple and cost-effective methods, which may improve the ecological status of future lakes and enable the establishment of new lakes without threatening vulnerable downstream ecosystems.


2020 ◽  
Vol 5 (4) ◽  
pp. 110-120
Author(s):  
Qunshan Wei ◽  
◽  
Bilal . ◽  
Muhammad Noman ◽  
Zhemin Shen ◽  
...  

Many remediating strategies are used for polluted soils, however, but mostly the essential phytoremediation is a less expensive, organically satisfying technique that is generally reasonable for various countries. Pot tests were managed to dissect the Brassica júncea plant biomass cultivated on Pb as well as Cd polluted soils as well to survey its ampleness for the evacuation of Pb and Cd. Samples of picked plants developed at a blend of alluvial soil and sand were moved with vessel of pots the earth finishing extents as well allowed make with time regenerative development. Through acid digestion, Pb and Cd extraction was settled from the plant. Consequently, they were collected and afterwards examined for chosen metals through utilizing Atomic Absorption Spectrometry (AAS). Generally, the current examination results demonstrated that no hyperaccumulators of Pb as well Cd were recognized in the region. Body parts of the plant were categorized as Pb low accumulators, moderate accumulators and excluder, as well as Cd low accumulator, excluder. Additionally, Cd concentration was high up than the allowable range in species of plant. In plants, allowable range of Pb and Cd is 0.2 - 20 and 0.1 -2.4 mg kg – 1. In Brassica júncea plant the Pb as well Cd both were no hyperaccumulators. Hence, this local plant had the suitable ability to use for phytoremediation of contaminated soils around the Hayatabad Industrial area, Peshawar. All experimental Results demonstrated that from the medium of soil by Brassica júncea (L.) Czern plant the maximum lead and cadmium removals were 94 % and 94.26 %, respectively in the open environment, while in the control environment this removal was 82 % for Pb and 93.16 % for Cd .The present research work observes that brassica júncea (L.) Czern plant was more helpful for Cd take-up contrasted with Pb, and thus it is capacity we suggest Pb as well Cd for remediation from polluted soils. Keywords: Lead, Cadmium, Contaminated soil, Removal


Sign in / Sign up

Export Citation Format

Share Document