scholarly journals Effect of a Newly-Developed Nutrient Solution and Electrical Conductivity on Growth and Bioactive Compounds in Perilla frutescens var. crispa

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 932
Author(s):  
Thi Kim Loan Nguyen ◽  
Moon-Sun Yeom ◽  
Myung-Min Oh

We evaluated the effect of a newly-developed nutrient solution of red perilla (NSP) with various electrical conductivity (EC) levels on plant growth, mineral content, and bioactive compounds. Four-week-old seedlings were grown in greenhouse nutrient solution as control (CT) (EC 1–3 dS m−1) or NSP (EC 1–6 dS m−1). NSP 1 dS m−1 induced better growth characteristics, whereas higher EC levels inhibited plant growth. Most of the macro-elements contents significantly decreased under NSP 6 dS m−1, whereas the micro-elements contents fluctuated according to EC levels. Total phenolic concentration in NSP was lower than that in CT, and total phenolic content was highest under NSP 1 dS m−1. Total anthocyanin and antioxidant concentrations and contents increased at lower EC levels. Rosmarinic and caffeic acids concentrations increased at higher EC levels, whereas there were no significant differences in these compound contents among the EC levels. No difference in perillaldehyde concentration was observed, whereas the content was higher at lower EC levels. Overall, these results suggest that NSP 1 dS m−1 is suitable for cultivating red perilla in plant factories.

Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 76 ◽  
Author(s):  
Vu Phong Lam ◽  
Sung Jin Kim ◽  
Jong Seok Park

The objective of this study was to determine the proper electrical conductivity (EC) of a nutrient solution (NS) for accumulating bioactive compounds of Agastache rugosa without decreasing plant growth. Six-week-old seedlings were transplanted in a deep flow technique system with Hoagland NS with a 2.0 dS·m−1 EC for the initial week. From eight days after transplanting, the plants were treated with six EC treatments of 0.5, 1.0, 2.0, 4.0, 6.0, and 8.0 dS·m−1 for three weeks. Plant growth parameters, leaf gas exchange parameters, the relative chlorophyll value, and the ratio of variable to maximum fluorescence (Fv/Fm) were measured, and the rosmarinic acid (RA), tilianin, and acacetin concentrations were analyzed at 28 days after transplanting. The results showed that almost all plant growth parameters were maximized at 2.0 and 4.0 dS·m−1 and minimized at 8.0 dS·m−1 compared with the other EC treatments. The relative chlorophyll and Fv/Fm values were maximized at 2.0 and 4.0 dS·m−1. Similarly, leaf gas exchange parameters were increased at 2.0 and 4.0 dS·m−1. The RA content exhibited significantly higher values at 0.5, 1.0, 2.0, and 4.0 dS·m−1 compared with other treatments. The tilianin and acacetin contents exhibited the significantly highest values at 4.0 and 0.5 dS·m−1, respectively. These results suggest optimal EC treatment at 4.0 dS·m−1 for increasing bioactive compounds in A. rugosa plants without decreasing plant growth. Excessively high or low EC induced salinity stress or nutrient deficiency, respectively. Furthermore, among the plant organs, the roots of A. rugosa contained the highest RA concentration and the flowers contained the highest tilianin and acacetin concentrations, which revealed a higher utilization potential of the roots and flowers for bioactive compounds.


2021 ◽  
Author(s):  
Laldinfeli Ralte ◽  
Usha Bhardwaj ◽  
Yengkhom Tunginba Singh

Abstract Background Solanaceae plants are incredible sources of proteins and minerals; some even have high medicinal value recognized traditionally. The present study was designed to explore and document the ethnobotany, phytochemical and mineral nutrient composition, antimicrobial properties, antioxidant potential and identify functional groups from edible species of Solanaceae from Mizoram, India. Methods Field surveys and samples collection were conducted from Aizawl District, Mizoram, India. All the studied samples were extracted using Soxhlet apparatus for analysis of bioactive compounds. The total phenol, total flavonoid and total anthocyanin content were determined using standard methods. The antioxidant activity was done using DPPH free radical scavenging activity, Ascorbate peroxidase (APX), Catalase (CAT) and Superoxide dismutase (SOD) activities. The proximate analysis and mineral contents were also determined. The antibacterial potential was determined by agar well diffusion method. The functional groups present in plants were analyzed using Fourier Transformed Infrared Spectroscopy (FTIR). All the results were reported as the mean ± standard deviation. The linear regression coefficient (R2) for total flavonoid and phenolic content with antioxidant activity was then analysed using Graph Pad Prism Version 5. Results The phytochemical screenings showed the presence of alkaloids, tannins, flavonoids, terpenoids and saponins. The highest total phenolic content was found in Solanum anguivi Lam. (29.51 mg GAE/g), and Capsicum annuum L. contained the highest total flavonoids (35.15 ± 0.03 mg/g). Proteins and carbohydrates contents were found to be the highest in Solanum melongena L. (28.49 mg/g) and Physalis angulata L. (35.64 mg/g) respectively. Elemental analysis showed the presence of Calcium (Ca), Copper (Cu), Iron (Fe), Manganese (Mn), Zinc (Zn), Potassium (K), Magnesium (Mg) and Sodium (Na) in high proportion in all the studied samples. All the plants extracts showed effective antibacterial activities against Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa. FTIR spectra revealed the presence of multiple functional groups, which could be used to identify bioactive compounds that can be subsequently utilized as herbal remedies for various ailments. Conclusions Our findings suggest that considerable amount of nutrients, biologically active and therapeutic compounds are present in the studied samples and these plants could be potential sources for new phyto-pharmaceutical and nutraceutical preparations.


2020 ◽  
Vol 50 (3) ◽  
pp. 460-469
Author(s):  
Damir Zyaitdinov ◽  
Alexandr Ewteew ◽  
Anna Bannikova

Introduction. Bioactive compounds are a very popular topic of modern food science, especially when it concerns obtaining polyphenols from cereals. The antiradical, antioxidant, and anti-inflammatory properties of these ingredients allow them to inhibit and prevent coronary, artery, and cardiovascular diseases, as well as several types of cancer. Encapsulation is an effective technology that protects bioactive ingredients during processing and storage. In addition, it also prevents any possible interaction with other food constituents. The research objective was to obtain effective tools of controlled delivery of bioactive compounds. The study featured whey protein as a wall material in combination with maltodextrin to encapsulate the bioactives from oat bran. Study objects and methods. The processed material was oat bran. The technology of its biotransformation was based on ultrasound processing and enzymatic hydrolysis. The antioxidant properties were determined using a coulometer of Expert – 006-antioxidants type (Econix-Expert LLC, Moscow, Russia). Separation and quantitative determination of extract were followed using a Stayer HPLC device (Akvilon, Russia) and a system column Phenomenex Luna 5u C18(2) (250×4.6 mm). The total phenolic content was measured by a modified Folin-Ciocalteu method. To prepare microcapsules, whey protein concentrate (WPC) and maltodextrin (MD) solutions were mixed at ratios 6:4, 4:6, and 5:5. After that, the mixes were treated by ultrasonication and 10% w/w of guar gum solution as double wall material. The encapsulation efficiency (EE) was determined as a ratio of encapsulated phenolic content to total phenolic content. A digestion protocol that simulates conditions of the human gastric and intestinal tract was adapted to investigate the release kinetics of the extracts. Results and discussion. Ferulic acid is the main antioxidant in cereals. Its amount during extraction was consistent with published data: 9.2 mg/mL after ultrasound exposure, 9.0 mg/mL after enzymatic extraction, and 8.6 mg/mL after chemical treatment. The antioxidant activity of the obtained polyphenols was quite high and reached 921 cu/mL. It depended on the concentration of the preparation in the solution and the extraction method. The polyphenols obtained by ultrasonic exposure and enzyme preparations proved to have a more pronounced antioxidant activity. The highest EE (95.28%) was recorded at WPC:MD ratio of 60:40. In vitro enzymatic hydrolysis protocol simulating digestion in the gastrointestinal tract was used to study the effect of capsule structural characteristics on the kinetics of polyphenol release. The percentage of o polyphenols released from capsules ranged from 70% to 83% after two hours of digestion, which confirmed the effectiveness of microencapsulation technology. Conclusion. The research confirmed the possibility of using polyphenols obtained by the biotechnological method from oat bran as functional ingredients. Eventually, they may be used in new functional products with bifidogenic properties. Whey protein can be used to encapsulate polyphenols as the wall material of microcapsules.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1237
Author(s):  
Antonios Chrysargyris ◽  
Spyridon A. Petropoulos ◽  
Dejan Prvulovic ◽  
Nikolaos Tzortzakis

Abiotic factors in nutrient solutions (NSs), such as salinity and high electrical conductivity (EC), may adversely alter plant growth and crop performance. However, there are medicinal/aromatic plants which can not only withstand these adverse conditions, but which can also increase their productivity or even enhance their quality in such conditions. As fresh water sources suitable for irrigation are becoming more and more limited, the use of low-quality water sources and hydroponic growing systems have been suggested as the main alternatives. Towards that direction, this study aims to evaluate the effect of high EC levels in NSs on geranium (Pelargonium graveolens L’Hér.) and common verbena (Verbena officinallis L.) plants cultivated in a soilless (perlite) hydroponics system. Plants were irrigated with a full nutrient solution of EC 2.1 dS m−1 and pH 5.8 until they reached a uniform size. Then, three treatments were applied, namely: (a) a control treatment with an EC of 2.1 dS m−1 in the NS, (b) a high-salinity NS created by adding 75 mM of NaCl (EC under 8.5 dS m−1) and (c) a concentrated NS with an EC of 8.5 dS m−1. In pelargonium, high salinity decreased the total phenolic and total flavonoid contents; antioxidant capacity; N, K, Mg and P content; as well as chlorophyll fluorescence, compared to the control treatment. On the other hand, increased salinity levels increased the Na and Ca content and stomatal resistance. In common verbena, salinity decreased total phenolic content and chlorophyll fluorescence but increased total flavonoid content; antioxidants; leaf K, P, Na, Cu and Zn content; and stomatal resistance, compared to the control. In both species, high EC did not affect polyphenols, flavonoids or antioxidants, whereas it increased stomatal resistance and nutrient accumulation in the leaves, and decreased chlorophyll fluorescence compared to the control treatment. Damage indices, indicated by lipid peroxidation, hydrogen peroxide production and the elevation of enzymes’ antioxidant activities, were evidenced in both saline- and high-EC-treated plants. In conclusion, despite having the same EC levels in the nutrient solution, it seems that ionic stress caused by high mineral concentrations in the nutrient solution had less severe effects on the tested plants than the relevant osmotic stress caused by high salinity due to the addition of NaCl in the nutrient solution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Shahinuzzaman ◽  
Parul Akhtar ◽  
N. Amin ◽  
Yunus Ahmed ◽  
Farah Hannan Anuar ◽  
...  

AbstractIn this study, the extraction conditions extracted maximize amounts of phenolic and bioactive compounds from the fruit extract of Ficus auriculata by using optimized response surface methodology. The antioxidant capacity was evaluated through the assay of radical scavenging ability on DPPH and ABTS as well as reducing power assays on total phenolic content (TPC). For the extraction purpose, the ultrasonic assisted extraction technique was employed. A second-order polynomial model satisfactorily fitted to the experimental findings concerning antioxidant activity (R2 = 0.968, P < 0.0001) and total phenolic content (R2 = 0.961, P < 0.0001), indicating a significant correlation between the experimental and expected value. The highest DPPH radical scavenging activity was achieved 85.20 ± 0.96% at the optimum extraction parameters of 52.5% ethanol (v/v), 40.0 °C temperature, and 22 min extraction time. Alternatively, the highest yield of total phenolic content was found 31.65 ± 0.94 mg GAE/g DF at the optimum extraction conditions. From the LC–ESI–MS profiling of the optimized extract, 18 bioactive compounds were tentatively identified, which may regulate the antioxidant activity of fruits of F. auriculata.


2021 ◽  
Vol 43 ◽  
pp. e55134
Author(s):  
Luis Angel Cabanillas-Bojorquez ◽  
Octavio Valdez-Baro ◽  
Erick Paul Gutierrez-Grijalva ◽  
Jose Benigno Valdez-Torres ◽  
Ramón Ignacio Castillo-López ◽  
...  

Blueberry is a fruit consumed fresh and as an ingredient in formulations such as jam, juice, and wine. Wine is a widely consumed beverage and produced from different berries and fruits. Blueberry wine contains bio-compounds that could have a beneficial effect on health. Therefore, this study aimed to optimize blueberry wine by two response variables (total soluble solids and fermentation time) to obtain the highest alcohol percentage, pH, and lightness. In order to optimize the fermentation process, a central composite design was used. The optimized blueberry wine was obtained at total soluble solids of 25°Brix and fermentation time of 16 d. The optimized blueberry characteristics estimated were: alcohol percentage of 11.91%, pH of 2.98, and lightness (L*) of 26.22, and the optimized blueberry characteristics experimental were: alcohol percentage of 11.93±0.02%, pH of 2.97±0.01, and L* of 25.42±1.80. The optimized blueberry wine had a total phenolic content of 360.27±18.09 mg of gallic acid equivalents L-1, total anthocyanin content of 46.27±3.66 mg cyanidin-3 glucoside L-1, antioxidant capacity by ABTS and DDPH assays of 1,539.8±92.18 and 1,688.07±57.57 mM Trolox equivalent L-1, respectively. The results suggest that optimized blueberry wine can be considered a drink with potential health applications.


Food Research ◽  
2021 ◽  
Vol 5 (6) ◽  
pp. 172-177
Author(s):  
B. Yudhistira ◽  
N.A. Choiriyah

Roselle contains high phenolic compounds, mainly anthocyanins that are not stable with pH, metal ions, light exposure, temperature, oxygen, and enzymatic activity. The stability of phenolic compounds can be improved by nanoencapsulation. This research was aimed to evaluate the effect of inulin, inulin-chitosan and inulin-chitosan-maltodextrin with varying concentrations as encapsulants towards the physicochemical properties and encapsulation efficiency of nanocapsules product by spray drying. Roselle extract nanocapsules were prepared using various types and concentrations of encapsulants (inulin, inulin-chitosan and inulin-chitosan-maltodextrin). The solubility of nanocapsules ranged from 69.31 - 83.2%, while the hygroscopicity of nanocapsules was varied, approximately 17.89 - 23.79%. Nanocapsules moisture content was approximately 2.83 - 4.27%, while the total phenolic content of nanocapsules ranged from 6.74 - 13.41 mg GAE/g DW. The total anthocyanin of roselle extract nanocapsules was approximately 2.25 - 4.82 mg/g DW. The encapsulation efficiency of phenolic compounds in this study were approximately 60.31 - 77.13%. Nanocapsules with inulin-chitosan-maltodextrin (2.4%-2.4%-0.2%) had good properties of nanocapsules such as good solubility, high total phenolic content and total anthocyanin content. Nanocapsules with 5% inulin and inulinchitosan-maltodextrin (2.4%-2.4%-0.2%) had particle size of 641.4 and 411.1 nm respectively. The nanocapsules had a spherical shape, smooth surfaces but also a few had indentations.


2001 ◽  
pp. 503-508 ◽  
Author(s):  
A. Elia ◽  
F. Serio ◽  
A. Parente ◽  
P. Santamaria ◽  
G. Ruiz Rodriguez

2019 ◽  
Vol 25 (6) ◽  
pp. 533-543 ◽  
Author(s):  
Jennifer Osamede Airouyuwa ◽  
Thammarat Kaewmanee

Moringa oleifera, often referred to as ‘miracle tree’ contains high amount of bioactive nutrients and dietary antioxidants, which help in ameliorating oxidative stress and degenerating diseases. However, the bioactive compounds are highly susceptible to degradation, and this may decrease the antioxidants activity present in M. oleifera. To prevent these limitations, the utilisation of microencapsulation technique is of necessity. This study investigated the effect of two vegetable proteins: soy protein isolate and pea protein isolate as wall materials for M. oleifera leaf extracts encapsulation by spray drying technique. Three inlet air temperatures (140, 160, and 180 ℃) and two different formulations of core:wall material ratios (1:4 and 1:9, w/w) were studied. The total phenolic contents, antioxidant activity, microencapsulation yield, morphology, colour, tapped and bulk densities, particle size, and storage stability of M. oleifera microcapsules were analysed. Moringa microencapsulates with pea protein isolate had better powder quality than Moringa microencapsulates with soy protein isolate considering its significant higher particle size, bulk and tapped densities. Moringa microencapsulates with soy protein isolate proved to be a better carrier of bioactive compounds of both total phenolic content and 2,2-diphenyl-1-picrylhydrazyl activity at inlet air temperature in the range of 140–180 ℃. The total phenolic content and 2,2-diphenyl-1-picrylhydrazyl activity tend to be the most stable compound. The storage stability of bioactive compounds of both Moringa microencapsulates with pea protein isolate and Moringa microencapsulates with soy protein isolate was better preserved at 4 ℃ compared to that of 25 ℃.


Sign in / Sign up

Export Citation Format

Share Document