scholarly journals The Impact of Parthenium Weed-Amended Substrates on the Germination and Early Growth of a Range of Pasture and Crop Species

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1708
Author(s):  
Boyang Shi ◽  
Kunjithapatham Dhileepan ◽  
Steve Adkins

Parthenium weed (Parthenium hysterophorus L.) is an internationally important invasive weed native to the tropical and sub-tropical Americas, and invasive in more than 30 countries. This weed has serious adverse influences on rangeland and agricultural crop production, on human and animal health, and on the biodiversity of natural communities. Parthenium weed leaf litter can reduce seedling emergence and affect the early growth of a wide range of pasture and crop species. Soil collected from a heavily infested parthenium weed area was shown to reduce seedling emergence of a wide range of test plants (lettuce (Lactuca sativa L.), maize (Zea mays L.), curly windmill grass (Enteropogon acicularis L.), and liverseed grass (Urochloa panicoides P.Beauv.)) by between 20 to 40%; however, the soil had no effect on the subsequent growth of the surviving test plants. Soil amended with dried parthenium weed leaf litter reduced the emergence of test species by ca. 20 to 40%, but it had no effect on the growth of the surviving test plants. One week after emergence, the growth of all test species was stimulated by 9 to 86% in the leaf litter-amended soil with the increased growth matching the increased amounts leaf litter amended. In parthenium weed-infested landscapes, the substrate (soil) is affected by the plant during the growing season by the release of allelopathic chemicals. However, the plant’s litter can affect the community outside of the growing season, first through a residual allelopathic activity, but also by a fertilizing effect as litter breakdown occurs. This study demonstrates the significant ability of parthenium weed to affect plant communities throughout the year and, when considered over several years, this may lead to the creation of a complete monoculture of the weed.

1983 ◽  
Vol 63 (3) ◽  
pp. 695-709 ◽  
Author(s):  
S. I. WARWICK ◽  
R. D. SWEET

A summary of biological information is provided on two species of Galinsoga — G. parviflora (small-flowered galinsoga) and G. quadriradiata (hairy galinsoga). Originating in Central America, both species are weeds of disturbed habitats and agricultural areas, occurring in most of the temperate and subtropical regions of the world. In recent years the galinsogas have become troublesome weeds of low-growing vegetable crops in northeastern North America. The two species serve as alternate hosts for many insects, viruses and nematodes which affect crop species. Both species possess several features which predispose them to weediness and contribute to a rapid buildup of populations after an initial infestation. These include lack of seed dormancy, lack of special requirements for germination, rapid seedling development, the ability to flower after a short period of vegetative growth, the production of flowers and fruits throughout the growing season, the production of several generations in a single growing season, self-compatibility and the production of large numbers of viable seeds under a wide range of environmental circumstances.Key words: Galinsoga parviflora, G. quadriradiata, biology


2016 ◽  
Vol 5 (10) ◽  
pp. 1442 ◽  
Author(s):  
Aditi Shreeya Bali* ◽  
Daizy R. Batish ◽  
Harminder Pal Singh

The present study investigated the phytotoxic potential oil Callistemon viminalis essential oil against some weeds viz. Ageratum conyzoides, Sorghum halepense, Leptochloa chinensis and Commelina benghalensis in order to assess its herbicidal activity. The laboratory bioassay revealed that Callistemon oil (0.025-0.1 %) decreased the emergence and early growth of test species in a dose-dependent manner. At 0.1 % Callistemon oil treatment none of the seeds of C. benghalensis germinated. The Callistemon oil not only affected the germination and early growth of weed species but also severely decreased the chlorophyll content of the test plants. The chlorophyll content decreased by ~ 71% in C. benghalensis in response to 0.05 % Callistemon oil treatment. These results strongly indicate the adverse effect of Callistemon oil on photosynthesis of test plants. Based on the study, it can be concluded that Callistemon oil possess phytotoxic potential and can be used as bioherbicide in weed management programmes.


2021 ◽  
Vol 13 (16) ◽  
pp. 3069
Author(s):  
Yadong Liu ◽  
Junhwan Kim ◽  
David H. Fleisher ◽  
Kwang Soo Kim

Seasonal forecasts of crop yield are important components for agricultural policy decisions and farmer planning. A wide range of input data are often needed to forecast crop yield in a region where sophisticated approaches such as machine learning and process-based models are used. This requires considerable effort for data preparation in addition to identifying data sources. Here, we propose a simpler approach called the Analogy Based Crop-yield (ABC) forecast scheme to make timely and accurate prediction of regional crop yield using a minimum set of inputs. In the ABC method, a growing season from a prior long-term period, e.g., 10 years, is first identified as analogous to the current season by the use of a similarity index based on the time series leaf area index (LAI) patterns. Crop yield in the given growing season is then forecasted using the weighted yield average reported in the analogous seasons for the area of interest. The ABC approach was used to predict corn and soybean yields in the Midwestern U.S. at the county level for the period of 2017–2019. The MOD15A2H, which is a satellite data product for LAI, was used to compile inputs. The mean absolute percentage error (MAPE) of crop yield forecasts was <10% for corn and soybean in each growing season when the time series of LAI from the day of year 89 to 209 was used as inputs to the ABC approach. The prediction error for the ABC approach was comparable to results from a deep neural network model that relied on soil and weather data as well as satellite data in a previous study. These results indicate that the ABC approach allowed for crop yield forecast with a lead-time of at least two months before harvest. In particular, the ABC scheme would be useful for regions where crop yield forecasts are limited by availability of reliable environmental data.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 885
Author(s):  
Pooja Tripathi ◽  
Sangita Subedi ◽  
Abdul Latif Khan ◽  
Yong-Suk Chung ◽  
Yoonha Kim

Roots play an essential function in the plant life cycle, as they utilize water and essential nutrients to promote growth and plant productivity. In particular, root morphology characteristics (such as length, diameter, hairs, and lateral growth) and the architecture of the root system (spatial configuration in soil, shape, and structure) are the key elements that ensure growth and a fine-tuned response to stressful conditions. Silicon (Si) is a ubiquitous element in soil, and it can affect a wide range of physiological processes occurring in the rhizosphere of various crop species. Studies have shown that Si significantly and positively enhances root morphological traits, including root length in rice, soybean, barley, sorghum, mustard, alfalfa, ginseng, and wheat. The analysis of these morphological traits using conventional methods is particularly challenging. Currently, image analysis methods based on advanced machine learning technologies allowed researchers to screen numerous samples at the same time considering multiple features, and to investigate root functions after the application of Si. These methods include root scanning, endoscopy, two-dimensional, and three-dimensional imaging, which can measure Si uptake, translocation and root morphological traits. Small variations in root morphology and architecture can reveal different positive impacts of Si on the root system of crops, with or without exposure to stressful environmental conditions. This review comprehensively illustrates the influences of Si on root morphology and root architecture in various crop species. Furthermore, it includes recommendations in regard to advanced methods and strategies to be employed to maintain sustainable plant growth rates and crop production in the currently predicted global climate change scenarios.


Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 435
Author(s):  
Agnieszka Ludwiczak ◽  
Monika Osiak ◽  
Stefany Cárdenas-Pérez ◽  
Sandra Lubińska-Mielińska ◽  
Agnieszka Piernik

Salinization is a key soil degradation process. An estimated 20% of total cultivated lands and 33% of irrigated agricultural lands worldwide are affected by high salinity. Much research has investigated the influence of salt (mainly NaCl) on plants, but very little is known about how this is related to natural salinity and osmotic stress. Therefore, our study was conducted to determine the osmotic and ionic salt stress responses of selected C3 and C4 cultivated plants. We focused on the early growth stages as those critical for plant development. We applied natural brine to simulate natural salinity and to compare its effect to NaCl solution. We assessed traits related to germination ability, seedlings and plantlet morphology, growth indexes, and biomass and water accumulation. Our results demonstrate that the effects of salinity on growth are strongest among plantlets. Salinity most affected water absorption in C3 plants (28% of total traits variation), but plant length in C4 plants (17–27%). Compensatory effect of ions from brine were suggested by the higher model plants’ growth success of ca 5–7% under brine compared to the NaCl condition. However, trait differences indicated that osmotic stress was the main stress factor affecting the studied plants.


1996 ◽  
Vol 10 (4) ◽  
pp. 744-749 ◽  
Author(s):  
R. L. Anderson ◽  
D. C. Nielsen

Seedling emergence was characterized for five weeds that infest summer annual crops in the central Great Plains as affected by crop canopy or tillage. The study was established in winter wheat stubble between 1987 and 1990, with seedling emergence recorded weekly between April 1 and November 1. Kochia emerged primarily from early April to late June, whereas green foxtail, wild-proso millet, and redroot pigweed began emerging in late May and continued until August. Volunteer wheat emerged throughout the growing season. Tillage did not affect the emergence pattern of any species, but the numbers of kochia, volunteer wheat, and green foxtail seedlings were increased in no-till. Conversely, wild-proso millet emergence was greater with tillage. Only volunteer wheat's emergence was affected by crop canopy, as fall emergence of volunteer wheat was more than three times greater in corn than in proso millet.


1988 ◽  
Vol 18 (10) ◽  
pp. 1226-1233 ◽  
Author(s):  
Jeremy S. Fried ◽  
John C. Tappeiner II ◽  
David E. Hibbs

Survival, age and height distributions, and stocking of bigleaf maple (Acermacrophyllum Pursh) seedlings were studied in 1- to 250-year-old Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stands in western Oregon to identify the stages in stand development in which bigleaf maple is most likely to establish successfully from seed. Maple seedling emergence averaged 30–40% where seeds were planted and protected from rodents but was typically <2% for unprotected seeds. Seedling survival after 2 years was highly dependent on canopy density, measured by percent sky. Average 1st-year survival of seedlings originating from planted, protected seeds was highest in clearcuts (1–2 years old, 36% survival, 56% sky) and pole-size stands (41–80 years old, 30% survival, 17% sky) with sparse understories and canopies. It was lowest in young stands with dense canopies (20–40 years old, 4% survival, 8% sky) and old stands (81–250 years old, 14% survival, 13% sky) with dense understories. Naturally regenerated populations of bigleaf maple seedlings, which occurred in aggregations (0.005–0.04 ha in area), were most abundant (up to 10 000/ha) in pole-size Douglas-fir stands. Although seedling size distributions within stands had a strongly inverse J shaped form, size distributions within aggregations appeared more normal (bell-shaped). Seedling age rarely exceeded 15 years. Seedlings grew slowly in the understory, often reaching only 25 cm in height after 8–10 years, and were intensively browsed by deer. Naturally regenerated seedlings were virtually absent from clearcuts, probably because of dense competing vegetation and lack of seed caused by poor dispersal and seed predation. The "window" for the most successful establishment of bigleaf maple seedlings appears to begin after canopy thinning and end before forbs and shrubs invade.


1978 ◽  
Vol 91 (1) ◽  
pp. 47-60 ◽  
Author(s):  
J. N. Gallagher ◽  
P. V. Biscoe

SummaryAnalysis of measurements of absorbed radiation and leaf area indices of wheat and barley crops showed that throughout most of growth the fraction of absorbed solar radiation could be described by a simple exponential equation.For several of these crops grown under a wide range of weather and husbandry at Sutton Bonington and Rothamsted, 2-weekly values of crop growth rate (C) were closely related to radiation absorbed until ear emergence and about 3·0 g of dry matter (D.M.) were produced by each MJ of photosynthetically active radiation (PAR) absorbed. Final crop weight was closelyrelated to total PAR absorbed during growth (SA); on average about 2·2 g D.M. were produced per MJ absorbed, equivalent to a growth efficiency (Eg) of approximately 3·9%. Unfertilized and drought-stressed crops had a smaller Eg.The fraction of total crop D.M. harvested as grain (harvest index) varied more for wheat than for barley. Calculations of a maximum realizable grain yield made using the largest values of Eg and SA for the crops measured and assuming a harvestindex of 0.53 (achieved in an experimental crop) showed a grain D.M. yield of 10·3 t D.M./ha to be possible. To achieve such a yield would require full crop cover from the beginning of April until the end of July in a typical English growing season.


1992 ◽  
Vol 22 (8) ◽  
pp. 1089-1093 ◽  
Author(s):  
R. Trowbridge ◽  
F.B. Holl

An overdense lodgepole pine (Pinuscontorta Dougl. ex Loud.) stand was knocked down and the site was prepared by broadcast burn, windrow burn, or mechanical forest floor removal. Inoculated alsike clover (Trifoliumhybridum L.) was seeded at 0, 10, 20, and 30 kg/ha for the three different site preparation treatments to determine the effects of (i) site preparation on infection and effectiveness of the clover–Rhizobium symbiosis and clover percent cover and (ii) the clover–Rhizobium N2-fixing symbiosis on survival, early growth, and foliar nitrogen concentration of lodgepole pine seedlings. The N2-fixing symbiosis established well in all treatments. Clover percent cover increased with increasing rate of seeding, although by relatively few percent in the clover seeded plots. Broadcast burning, windrow burning, and mechanical forest floor removal did not affect the establishment of the N2-fixing symbiosis or clover percent cover. Lodgepole pine survival was not affected by the seeding treatments in any year, nor were height measurements during the first three growing seasons. Seedling height was slightly less in clover-seeded plots compared with controls in the fourth growing season. Lodgepole pine seedlings on clover-seeded plots had decreased diameter growth compared with controls during the first three growing seasons, but incremental diameter growth no longer showed this effect by the fourth growing season. Needle mass (g/100 needles) was less in clover-seeded plots at the end of the second growing season, but this effect was reversed by the fourth growing season, when both needle mass and foliar nitrogen concentration in lodgepole pine foliage were greater in clover-seeded plots.


Sign in / Sign up

Export Citation Format

Share Document