scholarly journals Soil Health Check-Up of Conservation Agriculture Farming Systems in Brazil

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2410
Author(s):  
Jardel H. Passinato ◽  
Telmo J. C. Amado ◽  
Amir Kassam ◽  
José A. A. Acosta ◽  
Lúcio de P. Amaral

Conservation agriculture has been promoted as the main strategy to regenerate soil life but its effect on soil enzyme activity remains little documented. This study investigated the β-glucosidase and arylsulfatase enzymes as tools to evaluate soil health at the field level. Croplands in four main grain-producing states in Brazil were selected for this study. In each cropland, three environments (high yield (HYE), medium yield (MYE), and low yield (LYE)) were delineated for soil sampling to determine soil chemical attributes and enzyme activity. In one of these fields with a large temporal database, soil DNA characterization was also undertaken. The two soil enzymes investigated were affected by a range of soil attributes and the most important of these were identified. Around 40% of the data points sampled had low soil organic matter content; these were associated with low enzyme activity. Furthermore, in HYE there was more biodiversity and a higher presence of plant-growth promoters, while in LYE there were more plant pathogenic organisms.

2021 ◽  
Vol 51 ◽  
Author(s):  
Pedro Luan Ferreira da Silva ◽  
Flávio Pereira de Oliveira ◽  
Adriana Ferreira Martins ◽  
Danillo Dutra Tavares ◽  
André Julio do Amaral

ABSTRACT Integrated farming systems are promising strategies for the recovery of pastures and degraded soils. This study aimed to evaluate the effect of integrated farming systems arrangements, after four years of implementation, on the fertility, carbon stock and aggregate stability of an Alfisol, in the semiarid region of the Paraíba state, Brazil. A randomized block experimental design was used, with 5 treatments and 4 replications: Brachiaria decumbens; B. decumbens + Tabebuia impetiginous; B. decumbens + Gliricidia sepium; B. decumbens + Mimosa caesalpiniifolia; and B. decumbens + maize. The soil chemical attributes, fertility, carbon stock and structural and aggregate stability were evaluated in the 0.00-0.10, 0.10-0.20 and 0.20-0.30 m layers. The B. decumbens + maize system presented an organic matter content 11.93 % higher than B. decumbens, and was higher than the other systems evaluated. Concerning the carbon stock in the 0.00-0.10 m layer, in B. decumbens the uptake was 2.66 Mg ha-1 higher than that of the B. decumbens + maize system and, on average, 4.69 Mg ha-1 higher than for the systems with the arboreal component. In the medium-term, B. decumbens is more efficient in adding carbon to the soil. The soil structural stability, aggregate stability index and fertility were not affected by the different arrangements after four years of implementation.


HORTUSCOLER ◽  
2020 ◽  
Vol 1 (01) ◽  
pp. 20-26
Author(s):  
Risa Selfiani ◽  
Darmansyah Darmansyah

Eggplant (Solanum melongena L.) is a plant species that is known as the fruit and vegetables grown for use as a food ingredient. These plants belong to one group of plants that produce seeds Eggplant Trunk divided into two kinds, namely the main stem and branching. Eggplant leaf consists of a petiole and the leaf blade. Eggplant flowers are hermaphrodite flowers, or better known as the bisexual flowers, the flowers are one of the stamen to the pistil. Eggplant fruit is the fruit of a true single.. Cultivation of eggplant in the Project of Independent Business is using composting technology bagase. Bagase compost is compost that comes from bagasse or the rest of the sugar mill. Bagase own compost organic matter content of about 90%, N content of 0,3%, 0,02% P2O5, K20 0,14%, Ca 0,06% and 0,04% Mg. The project goal independent business is the use of compost bagase on the cultivation of eggplant to reduce the use of chemical fertilizers and optimize plant production eggplant, farming systems semi-organic environmentally sustainable and analyze the feasibility of cultivation of eggplant with market potential in Payakumbuh and the District Fifty City. Independent business projects implemented during the four months from September to December 2015 and conducted experiments dikebun State Agricultural Polytechnic Payakumbuh with total area of ​​300 m2. Eggplant crop production on the independent business projects with the use of compost bagase treatment that is 575 Kg/300 m2, a profit of Rp. 835.310, the profitability of 92% and RC Ratio of 1,92.


2008 ◽  
Vol 74 (9) ◽  
pp. 2902-2907 ◽  
Author(s):  
Marketa Sagova-Mareckova ◽  
Ladislav Cermak ◽  
Jitka Novotna ◽  
Kamila Plhackova ◽  
Jana Forstova ◽  
...  

ABSTRACT Seven methods of soil DNA extraction and purification were tested in a set of 14 soils differing in bedrock, texture, pH, salinity, moisture, organic matter content, and vegetation cover. The methods introduced in this study included pretreatment of soil with CaCO3 or purification of extracted DNA by CaCl2. The performance of innovated methods was compared to that of the commercial kit Mo Bio PowerSoil and the phenol-chloroform-based method of D. N. Miller, J. E. Bryant, E. L. Madsen, and W. C. Ghiorse (Appl. Environ. Microbiol. 65:4715-4724, 1999). This study demonstrated significant differences between the tested methods in terms of DNA yield, PCR performance, and recovered bacterial diversity. The differences in DNA yields were correlated to vegetation cover, soil pH, and clay content. The differences in PCR performances were correlated to vegetation cover and soil pH. The innovative methods improved PCR performance in our set of soils, in particular for forest acidic soils. PCR was successful in 95% of cases by the method using CaCl2 purification and in 93% of cases by the method based on CaCO3 pretreatment, but only in 79% by Mo Bio PowerSoil, for our range of soils. Also, the innovative methods recovered a higher percentage of actinomycete diversity from a subset of three soils. Recommendations include the assessment of soil characteristics prior to selecting the optimal protocol for soil DNA extraction and purification.


1993 ◽  
Vol 8 (1) ◽  
pp. 27-33 ◽  
Author(s):  
J.L. Jordahl ◽  
D.L. Karlen

AbstractQuantitative studies are needed to separate the real and supposed benefits of alternative farming practices. Our objective was to learn how conventional and alternative practices on adjacent farms in central Iowa affected the water stability of soil aggregates. We collected samples of Clarion loam (fine-loamy, mixed, mesic Typic Hapludoll) from adjacent 16 ha fields in fall 1990 and spring 1991. Aggregate stability was determined by wet-sieving and by measuring turbidity of soil-water suspensions. The combined effects of alternative practices resulted in greater water stability of soil aggregates, higher soil organic matter content, and lower bulk density compared with conventional practices. The components of the alternative system that were mainly responsible for these differences were: rotations that included oat and hay crops; ridge-tillage; and additions of 45 Mg/ha of a mixture of animal manure and municipal sludge during the first 3 years of each 5 year rotation. The more favorable soil physical conditions, shown by increased water stability of soil aggregates, presumably will improve soil water regimes and reduce long-term soil erosion losses from the alternatively managed fields.


2021 ◽  
Author(s):  
Vito Abbruzzese

In many farm systems, both inorganic and organic fertilisers, including manure and slurry, are applied to the soil to replenish nutrient offtake in agricultural products and additional nutrient losses to soil as well as surface water and groundwater. With respect to sole reliance on inorganic fertilisers, the use of manure/slurry as a nutrient resource offers important benefits, including the reuse and recycling of nitrogen (N) and phosphorus (P) within farming systems as well as a reduction in the reliance on agricultural production on finite inorganic fertiliser reserves. There is increasing interest in the extent to which additives can enhance the nutrient value of slurry/manure. However, little is known about the impacts of these amended slurries/manures on the quantity and composition of N and P within agricultural and pasture soils. We report data from incubation experiments in which soils received a range of treatments, including the application of livestock slurry that had received a mixture of commercial additives. Our experiments were designed to understand how slurry that has received additives ultimately affects nutrient availability in organic, clay-loam and sandy-loam grassland soils. The addition of the additives to slurry resulted in a slight increase or no difference in total solids, pH, total N, ammonium-N, total P, total potassium, total magnesium and total sodium compared to the untreated counterpart. We considered the effects of our treatments on a range of agronomically important soil parameters, including Olsen-P, mineral-N, available-K, pH and organic matter content. This experiment aimed to understand the extent to which soil fertility could be enhanced through the application of slurries/manures that have received additives. The application of both amended and unamended slurry treatments on soil led to higher values of NH4-N, available-K, available Mg and pH than the addition of inorganic fertiliser. In addition, no substantial differences were observed between the treatment of the three soils with unamended and amended slurry.


1994 ◽  
Vol 45 (6) ◽  
pp. 1293 ◽  
Author(s):  
PF White ◽  
NK Nersoyan ◽  
S Christiansen

There is a need to quantify the effects on soil N of introducing different legumes into the farming systems of West Asia and North Africa. This paper presents 6 years results from an on-going experiment aimed at examining the productivity of several crop/livestock farming systems in north west Syria. Changes in total soil N and organic matter when either medic pasture (3 stocking rates), vetch, lentil, fallow or watermelon were rotated yearly with wheat were examined. In addition, in the sixth year of the experiment, mineral N levels in the soil and the N content of the wheat and legumes shoots were determined in order to formulate a simple N balance for each rotation. Medic pasture and vetch rotations increased total soil N and the organic matter content of the soil. Lentil had no effect on total soil N or the organic matter content. Total soil N also remained constant in the fallow rotation, but organic matter content of the soil tended to decrease. The changes in soil properties had implications for the long term production from the different rotations, and highlighted the importance of retaining legume residues for maintaining fertility.


2015 ◽  
Vol 2 (1) ◽  
pp. 17-25
Author(s):  
Mohammad Kamrul Hasan ◽  
Md Bayeazid Mamun

The study was conducted in Dukhula sadar and Gasabari forest range under Madhupur Sal Forest of Bangladesh to determine the soil nutrient composition and isolation of fungi with varying stands. Three stands viz. pure sal, plantation and mixed were considered as treatment of the study. A quadrate sample plot of 10×10 m2 size was measured to collect soil samples for both chemical analysis and fungi isolation. Soil pH, electrical conductivity, organic matter content, total N, available P, exchangeable K, available S, fungal abundance and colony character (cm) were determined to achieve the objective of the study. The results revealed that soil pH and electrical conductivity were highest (6.61 and 21.10?S/cm) in mixed stand and lowest (6.38 and 10.75?S/cm) in pure stand. Organic matter content and total N were highest (2.24 and 0.145%) in plantation stand and lowest (1.65 and 0.112%) in mixed and pure stand, respectively. Available P, exchangeable K and available S were highest (3.65, 98.66 and 17.53ppm) in pure stand and lowest (1.97, 79.49 and 10.25ppm) in plantation stand. In addition, four fungal genera Sclerotium, Rhizoctonia, Pythium and Verticillium were identified in the study area soils. The highest fungal population (entire genus except Verticillium) (colony number/g soil) was found in mixed stand while it was found lowest in pure (Sclerotium ) and plantation stand (Rhizoctonia and Pythium ). There was no significant variation in colony diameter of the fungi among the treatments. Therefore, it can be concluded that better soil health was maintained in natural forest rather than plantation forest.Res. Agric., Livest. Fish.2(1): 17-25, April 2015


2020 ◽  
Vol 17 (35) ◽  
pp. 948-959
Author(s):  
Matheus Borghezan ALBERTON ◽  
Cleber Antonio LINDINO

With the increase in fish production in fish farming systems, mainly tilapia, the use of the hormone 17α-methyltestosterone (MT) as an inducer of the masculinization of fry has grown together. The probability of contamination of natural resources also tends to increase, and there is no Brazilian law that regulates the content of this hormone in waters. The study of the interaction of the hormone with the typical soil of the producing regions is essential to understand the factors that influence its adsorption. This work used two samples of Eutropherric Red Oxisols and the conditions of the interaction of the hormone in static (resting), and dynamic (agitation) processes were evaluated, using isothermal models. The results showed that the higher organic matter content of the soil and the higher salinity of the aqueous medium increases the adsorption of MT in the soil in the static process. For the dynamic process, the Fe content influences the higher adsorption in soil. The pH of the medium does not affect the adsorption in any of the processes. The adsorption has exothermic characteristics, and the adsorption equilibrium is reached in 24 hours, and the Freundlich model for the soil 1 sample and the Temkin model for the soil 2 sample is the most suitable for the adsorption process. According to parameters calculated for the Dubinin isotherm, soil adsorption tends to have chemical interactions between adsorbent-adsorbate. These results show concern for the amount of adsorbed hormone sediment in fish farming tanks and their release to the water body, with the possibility of contamination of natural resources.


2021 ◽  
Author(s):  
Hélène Iven ◽  
Sonia Meller ◽  
Jörg Luster ◽  
Emmanuel Frossard

<p>Soil enzymes catalyse the hydrolysis of various soil compounds leading to an increase in the availability of nutrients for plants and microorganisms, but the increase in mobility might also lead to losses by leaching. Sources of extracellular soil enzymes in soil include release by soil microorganisms such as bacteria and fungi and plant roots but also microbial necromass. Irrespective of their source, the released enzymes can accumulate in the soil by becoming stabilized on mineral and organic surfaces. It is generally assumed that 40 to 60% of measured enzyme activity originate from stabilized enzymes. As such they directly affect the ability of a soil to fulfil its numerous functions, including the provision of nutrients to plants, the cleaning of percolating water and climate regulation.</p><p>Although measurements of soil enzyme activity are increasingly recognised as sensitive indicators of soil health, variations and inconsistencies between existing methods make it difficult to compare the results of different studies. Most commonly, soil enzyme activities are assessed using destructive biochemical laboratory incubations, thus altering the natural soil conditions.</p><p>Therefore, based on the principle of soil zymography, a membrane based method to map the heterogeneity of enzymatic activity on exposed soil surfaces, we developed a portative, hand-held sensor allowing rapid measurement of the soil enzymatic activity in-situ (Digit Soil; https://www.digit-soil.com/). In this presentation, we will compare the performance of our sensor to laboratory incubations for the application on various types of soils differing in basic properties such as pH, texture and soil organic matter content at different moisture conditions.</p><p>Based on the results, we will discuss the prospects this new sensor offers for rapid in-situ evaluation of soil health in the framework of precision agriculture and sustainability labels.</p>


Sign in / Sign up

Export Citation Format

Share Document